首页 > 新闻中心 > 高压技术<
中试控股技术研究院鲁工为您讲解:倍频电源耐压发生装置
ZSDBF-15KVA 多倍频感应耐压试验装置
触摸方式调节电压可实现本装置的多倍频试验电压输出
参考标准:DL/T 848.4-2004
多倍频感应耐压试验装置:多倍频感应耐压试验装置实现各种被试品的预防性交流耐压试验和交接性交流耐压试验,中试控股满足35kV及以下电压等级互感器的感应耐压试验我中试控股的感应耐压试验装置采用微机控制
中试控股结合先进的变频及高速采样技术设计制造,比传统的三倍频发生器效率高,输出电压稳定,测量精度高,重复性好,并且可以实现自动升压、升压至设定值后自动计时、计时完成后自动降压的功能,操作极其简单。
仪器采用背光式大屏幕液晶显示,全中文操作界面,带实时时钟和微型打印机。仪器采用一体化结构,重量轻,便于携带。
ZSDBF-15KVA 多倍频感应耐压试验装置技术指标
工作条件 环境温度:-10℃~50℃ 相对湿度:30%~90%
供电电源 三相AC380V±10%或AC220±10% 50 Hz±5 Hz
如用AC220供电,功率减半
输出频率 30Hz~200Hz 调节细度0.1 Hz
输出电压 0~400V正弦波
输出功率 15KW
最大输出电压 400V
最大输出电流 35A
电压最小分辨率 0.01V
电流最小分辨率 0.001A
电压电流精度 ±1%
外形尺寸(mm) 570(长)×400(宽)×350(高)
中试控股仪器重量 约44kg
中频无刷励磁同步发电机组
同步发电机组基本原理接线如下图所示。
同步发电机机组基本原理接线图
M——异步感应电动机;G——无刷中频同步发电机;T——升压变压器;
L1——铁芯电抗器;L2——空心电抗器(可用阻波器代替,用于增大补偿电抗的容量)
图中,电源装置
同补偿电抗器、中间升压变压器
以及必要的外围测量设备联合使
用。电源主要由三相异步电动机和无刷励磁的中频同步发电机组
成中试控股中频发电机组,再配以启动、控制、测量和保护系统组成。其工作原理为中频发电机
发出定频率(250Hz)的单相或三相交流电能,经中间变压器升压,同时用补偿电抗器
来调整补偿被试变压器的电容性电流,以获得所需的试验电压。这种工作原理和方式可以
得到所需频率的试验电压,电网电源仅用来驱动发电机组和提供直流励磁电源,使试验电
源与电网电源实现隔离,从而消除了试验回路来自电网系统的干扰,无刷励磁方式也大大
降低了电源本身的干扰水平,因此在做感应耐压的同时,也可进行局部放电测量。
感应分压器主要有两种使用状态:可作为分压器使用或与标准电压互感器级联使用. 下面分别对这两种使用状态进行说明。
1.使用感应分压器校电压互感器(作分压器使用)
感应分压器校验电压互感器接线图
使用感应分压器校验电压互感器时,按上图连线,一般感应分压器相对被检电压互感 器准确度而言,标准的误差可以忽略不计,从电压互感器校验仪上可直接读出被检电压互 感器的示值。 (感应分压器效验误差值多为经过折算到一次的误差值,所以要精确求出被检互感器的误 差值时,需要将感应分压器所给误差示值进行折算后作为标准修正值进行修正。)
2.与标准电压互感器级联校被试电压互感器
标准电压互感器与感分级联校验被试电压互感器接线图
以上为标准电压互感器与感分级联校验被试电压互感器接线图,如果标准电压互感器与被试电压互感器额定变比不同时,可以用标准电压互感器与感 应分压器级联,测出被检电压互感器的误差。
三倍频感应耐压装置通过施加倍频电源装置,以提高绕组间绝缘的试验电压,从而达到耐压试验的目的。此次中试定制30KVA倍频试验变压器采用分体式结构,试验变压器与控制台自成一体,方便试验过程中配合被试品随时移动位置
多倍频感应耐压试验装置实现各种被试品的预防性交流耐压试验和交接性交流耐压试验,中试控股满足35kV及以下电压等级互感器的感应耐压试验;
中试控股考验交联橡塑电力电缆、电力变压器、GIS、互感器、绝缘子、发电机、开关等被试品绝缘承受各种过电压能力及容性负载的交流耐压试验。
步长可以实时调节,任意选择1V、2V、5V、10V

电力潮流变化大和电压偏移大的变电所,如经计算普通变压器不能满足电力系统和用户对电压质量的要求时,应采用有载调压变压器;变电所的主接线,应根据变电所在电力网中的地位、出线回路数、设备特点及负荷性质等条件确定.并应满足供电可靠、运行灵活、操作检修方便、节约投资和便于扩建等要求;当能满足运行要求时,变电所高压侧宜采用断路器较少或不用断路器的接线.
中试控股电力讲解当有旁路母线时,首先宜采用分段断路器或母联断路器兼作旁路断路器的接线.当110kV线路为6回及以上,35~63kV线路为8回及以上时,可装设专用的旁路断路器.主变压器35~110kV回路中的断路器,有条件时亦可接入旁路母线.采用SF6断路器的主接线不宜设旁路设施;当变电所装有两台主变压器时,6~10kV侧宜采用分段单母线.
线路为12回及以上时,亦可采用双母线.当不允许停电检修断路器时,可设置旁路设施.当6~35kV配电装置采用手车式高压开关柜时,不宜设置旁路设施.变电所6~10kV线路的短路电流时,可采用变压器分列运行、采用高阻抗变压器、在变压器回路中装设电抗器措施.?
在变压器正常运行中,由于出口短路故障的影响,造成的损坏情况和后果更为严重。据相关数据统计,近年来,在一些地区,110kv及以上电压等级变压器发生短路故障电流冲击,直接导致损坏事故,占全部事故的50%以上。与往年统计数据相比,呈现明显上升趋势。
这种故障的情况很多,特别是变压器低压出口短路引起的故障危害更大。一般来说,应该更换线圈。如果情况严重,可能会更换所有线圈,造成非常严重的后果和损失。因此,应引起足够的重视。
对于变压器的热稳定性和动态稳定性,在给定的条件下,设计计算值仍然是检验的依据,但计算值与实际值之间的误差仍然缺乏研究和分析。一般情况下,设计值大于变压器的实际承载能力。目前,变压器突然短路试验逐步开展,为检测设计和技术水平提供了重要依据。
变压器低压侧短路时,变压器所承受的短路电流最大,低压线圈的结构一般采用圆柱形或螺旋形多股线。为了提高线圈的动态稳定性,线圈通常由绝缘纸管支撑。但有些厂家只考虑变压器的散热能力。对于其动态稳定性,只要计算值能满足要求,当变压器出口短路时,将提供支撑,线圈将因缺乏动态稳定性而变形甚至损坏。
中试控股电力讲解低压线圈的短路电流的轴向力产生线圈上弹簧的冲击力,导致变压器低压线圈上端的压缩结构损坏,线圈的变形和分散,以及变压器的损坏。
建议
1) 加强变压器设备从选型、订货、监造、验收到运行的全过程管理,明确专业人员及其职责。
2) 对220kV及以上电压等级的变压器,应加强质量控制措施,明确监督验收责任,并按《厂用变压器监督见证规程》的要求进行监督。监理验收后,监理人员应在规定时间内提交监理总结,并作为变压器原始资料归档。
3) 制造厂用于变压器生产的主要原材料和附件必须符合订货合同技术协议、制造厂出厂检验报告和出厂试验报告的要求;出厂试验时,所供套管应安装在变压器上进行试验;所有附件按实际使用方式预装配。
4) 在安装调试阶段,投产时没有遗留同类型问题,如进一步改进和加强压缩结构和压板强度等。同时,已进行突然短路试验的变压器短路电阻的试验报告和动态计算报告,应按有关规定向制造厂索取;在设计联络会前,取得订货变压器短路电阻计算报告。
5) 大型变压器在运输过程中,必须按规范要求安装具有时间刻度和适当量程的三维冲击记录仪。制造商、运输部门和用户到达安装现场后,应共同接受并保存记录数据和押运记录。
6) 加强变压器运行管理。严格执行交接试验程序,110kV及以上电压互感器出厂前应进行低压短路阻抗试验或用频响法测试线圈变形,保持原始记录。新建220kV及以上电压等级、120mva及以上容量变压器必须进行局部放电试验。220kV及以上电压等级变压器检修后,还必须进行现场局部放电试验。同时,加强变压器油谱分析和变压器在线监测技术的应用,努力提高变压器安全可靠运行的能力。 随着中国国民经济需求的不断增长,电力工业逐步发展成为大容量、特高压水平,对电力系统安全稳定运行和电能质量的要求也不断提高。在庞大的输配电系统中,油浸式电力变压器是一种极其重要和昂贵的电气设备。
据统计,在由电力设备故障引起的大面积停电事故中,由电力变压器绝缘老化引起的故障占主要比例。油纸绝缘结构是大型油浸变压器内绝缘的主要组成部分。直接有效地诊断变压器油纸绝缘状态对电力系统安全可靠运行具有重要意义。
目前,国内外对变压器油纸绝缘状态诊断技术进行了大量的相关研究,可以概括为传统的特征量诊断方法和介质响应特征量诊断方法。
传统特征值诊断方法中用于诊断油浸式变压器绝缘状态的参数主要有:油中溶解气体表示的化学参数、纤维素绝缘纸的糠醛含量和聚合度;绝缘电阻表示的电气参数,极化指数、介质损耗因子、局部放电特性等。
介质响应特征值诊断方法主要有:返回电压法(RVM)、极化去极化电流法(PDC)和频域谱法(FDS)。它是一种无损、易操作的绝缘系统电气诊断方法,与传统诊断方法相比,更适合于电力变压器油纸绝缘状态的现场测试、诊断和评价,具有良好的工程应用前景。
一般来说,介质响应特征值诊断法具有无损、操作简单、抗干扰等优点,比传统方法更适合于变压器绝缘的现场诊断。它具有良好的工程应用前景,是未来绝缘诊断技术的研究热点。
上一篇:感应多倍频耐压发生装置
下一篇:电源倍频耐压发生装置
快速跳转