首页 > 新闻中心 > 高压技术<
中试控股技术研究院鲁工为您讲解:电缆耐压诊断发生器(电缆主绝缘)
ZSVLF-20KV超低频高压发生器
电流、电压、波形数据均直接通过高压侧采样获得,所以数据真实、准确
超低频高压发生器:设计指标完全符合《电力设备专用测试仪器通用技术条件,第4部分:超低频高压发生器通用技术条件》电力行业标准,使用十分方便。
现在国内外均采用机械式的办法进行调制和解调产生超低频信号,所以存在正弦波波形不标准,测量误差大,高压部分有火花放电,设备笨重,而且正弦波的二,四象限还需要大功率高压电阻进行放电整形,所以设备的整体功耗较大。本产品均能克服这样一些不足之处。
中试控股始于1986年 ▪ 30多年专业制造 ▪ 国家电网.南方电网.内蒙电网.入围合格供应商
一.概述
电力电容器的超低频耐压试验方法
超低频高压发生器从国内外多年的理论和实践证明,用0.1Hz超低频耐压试验替代工频耐压试验,不但能有同样的效果,而且设备的体积大为缩小,重量大为减轻,理论上容量约为工频的五百分之一,且操作简单,与工频试验相比优越性更多。这就是为什么发达国家普遍采用这一方法的原因。
超低频高压发生器低压侧的电流超过额定电流时将进行停机保护,动作时间都小于20毫秒
超低频高压发生器ZSVLF-30KV 40KV 50KV 60KV 80KV / 0.1Hz 超低频高压发生器适用于:交联聚乙烯绝缘电力电缆的耐压试验 / 水力发电机和大型发电机的耐压试验。
当输出超过所设定的限压值时,仪器将停机保护,动作时间小于20毫秒
电气设备的高压耐压试验是《绝缘预防性试验》规定的最重要项目之一。
耐压试验可分为交流耐压试验和直流耐压试验,交流耐压试验又可分为工频、变
频和 0.1Hz 超低频测试技术,其中 0.1Hz 超低频技术是最新技术,是当前国际
电工委员会推荐的技术。我公司新一代本系列超低频高压发生器是采用最新
美国技术自主开发的核心产品,采用 7 寸触模屏、最新 ARM7 单片机、高速 AD 采集电路,并配有后台管理软件。它克服了国内同类产品的诸多缺点(见表 1),
性价比远远高于同类进口产品,特别适用于绝缘等值电容较大的电气设备(例如:
电力电缆、电力电容器、大中型发电机和电动机等)耐压试验,符合 2004 年国
家新颁布电力行业标准《超低频高压发生器通用技术条件 DL/T849.4-2004》要求。
表 1 0.1Hz 耐压试验设备机械式与电子式的性能比较
二.0.1Hz 超低频耐压技术优点
超低频绝缘耐压试验实际上是工频耐压试验的一种替代方法。在对大中型
发电机、电动机、电力电缆等试品进行工频耐压试验时,由于它们的绝缘层呈现
较大的电容量,所以需要很大容量的试验变压器或谐振变压器。这样一些巨大的
设备,不但笨重,造价高,而且使用十分不便。为了解决这一矛盾,国际上普遍
采用了降低试验频率,从而降低了试验电源容量的方法。从国内外多年的理论和
实践证明,用 0.1Hz 超低频耐压试验替代工频耐压试验,不但能有同样的等效
性,而且设备的体积大为缩小,重量大为减轻,理论上容量约为工频的五百分之
一,且操作简单。这就是为什么发达国家普遍采用这一方法的主要原因。
根据我国电力系统实际情况,国家发改委已制定了《35kV 及以下交联聚乙
烯绝缘电力电缆超低频(0.1Hz)耐压试验方法》行业标准,2004 年颁布了电力
行业标准《超低频高压发生器通用技术条件 DL/T 849.4-2004》,我国正在推广这一最新的试验方法。
虽然直流耐压试验设备具有体积小、重量轻和造价低等优点,但是直流耐
压试验对被试品绝缘破坏性也是最大的。(见表 2)所以国家最新颁布的电气设
备预防性试验相关规程已经明文规定不再使用直流高压对电气设备进行耐压试
验,推荐使用交流耐压试验。
本公司研制的新一代本系列 0.1Hz 超低频高压发生器”采用最新电
力电子元器件和最新 ARM7 单片机技术,进一步降低了设备的体积和重量,傻瓜
式操作,性能更稳定,克服了第一代机械式升压器使用寿命短、故障率高、体积
大的缺点。通过多年的实践,大量用户的反馈表明:本 系列超低频高压技
三. 本系列产品技术参数
1.输出额定电压:参见表3
2.输出频率:0.1Hz、0.05Hz、0.02Hz
3.带载能力:0.1Hz最大 1.1μF
0.05Hz 最大 2.2μF
0.02Hz 最大 5.5μF
4.测量精度:3%
5.电压正,负峰值误差:≤3%
6.电压波形失真度:≤5%
7.使用条件:户内、户外;温度:-10℃~+40℃;湿度:≤85%RH
8.电源保险管:参见表3
9.电源:电压220V±5%,50±5Hz
注意:若使用便携式发电机供电,要求发电机输出电压、频率稳定(一般要
求功率大于 3kW,频率 50Hz,电压 220V±5%
试验操作方法与上述方法相似,连线方法如图10所示。在确定试验电压和试验时间时,应按照有关规程办
注意事项
1、本仪器所配升压器不得作它用。
2、机内带电,切勿自行拆机修理,以免发生意外。仪器有故障,应与我公司联系修理。
3、关机后应用放电棒对试品进行充分放电,再拆线。
4、开机前应用放电棒对试品进行充分放电。
5、每次启动升压前应用放电棒对试品进行充分放电。
(1)确认所有的连接都已完成,特别是控制器和高压器的接地良好,并且可靠。在此步骤中,应注意确保所有绝缘体、接线柱、电缆端头是清洁且干燥的,避免闪络和泄漏;处理好远端的隔离和绝缘,也就是将一些导体从其他导体及它们的屏蔽层中分离出来,要求所有电缆屏蔽应在电缆的近端点处接地;在电缆中或临近的任何没有被测试的导体或线芯都应接地,以避免电荷的积累及可能存在的电击危险。
(2)测试电缆的容量,选择佳频率。将控制器放在测试电缆的附近。
(3)中试控股详细讲解接通电源开关,电源指示灯亮。选择仪表模式至恤F档,仪表调零。
(4)HOT端口输出连接被试电缆线芯,COM端口输出连接被试电缆接地,测试电缆电容。
(5)如果电容表模式电缆电容读数小于6μF,按下×l按钮,按表l选择合适的频率。
注:要求Zui小负载电容0.01 p-F,以获得完整输出。
(6)中试控股详细讲解带示波器输出接口的,可外接示波器(可选件)用来监测输出波形。示波器需接地且输入应设置到1 V,格,扫描基线应为5 s,格,且触发器应设置为滚动显示,观察波形,有信号存储显示的示波器适合用于此。
(7)通过外界泄流电阻将输出线接至试品。确保试品与周围接地体有足够的安全距离。
(8)选择电流,电容表模式选择开关至mA档,观察电缆充电电流和放电电流。
(9)输出控制按钮应在零位,按下高压开按钮。高压开指示灯亮,此时高压装置上的泵和风扇起动。第一次使用该仪器试验时,在升高输出电压及开始测试之前,将输出控制没为零,并使油循环10 rain,这有助于排除冷却系统中的空气。顺时针缓慢旋转输出控制旋钮,以2 kV/s均匀升压,直至升到所需电压值。对于大电容负载,如果升压过快,会引起过载保护跳闸。观察千伏表,设置电压。请注意输出周期,在0.02 Hz的频率下50 s输出一个完整的正弦波;在O.05 Hz的频率下20 s输出一个完整的正弦波;在O.1 Hz的频率下10 s输出一个完整的正弦波。要设置输出电压,需要多于一个周期才能精确地读出输出结果。获得完整的输出,需要负载电容的Zui小值为0.01 uF。
(10)保持输出电压至规定试验时间。
(11)中试控股详细讲解在试验过程中,如发现电压表指针摆动较大,电流表指示急剧增加,调压器继续升压值电压基本不变甚至显下降趋势,而电流增加幅度较大,试品电缆发出异味,烟雾或异常响声或闪络等现象,应立即停止升压,并查明原因。若是试品电缆绝缘部分簿弱引起的,则认为耐压试验不合格;若是由空气湿度或表面脏污等原因所致,可将试品电缆清洁,等干燥后再进行试验。
(12)试验完毕,按下高压关按钮之前,将输出控制旋钮旋至零位,负载归零,且使仪器循环60 S以上,这样有充分的放电时间。
(13)如试验时试品击穿,过载保护电路会断开高压。如出现过载,正常的波形输出将中断,负载将以更慢的速度放电。
(14)拆试验回路接线时,观察电压表指针是否回零,然后用放电棒对试品放电。

微安表接在低压侧的接线图如图5-2所示。这种接线微安表处在低电位,具有读数安全、切换量程方便的优点。
当被试品的接地端能与地分开时,宜采用图5-2(a)的接线。若不能分开,则采用5-2(b)的接线,由于这种接线的高压引线对地的杂散电流I’将流经微安表,从而使测量结果偏大,其误差随周围环境、气候和试验变压器的绝缘状况而异。所以,一般情况下,应尽可能采用图5-2(a)的接线。
5.5试验结果的分析判断
5.5.1试验电压见试验规程
5.5.2与前一次测试结果相比应无明显变化
5.5.3泄漏电流最大容许值试验规程
5.6注意事项
5.6.1 35KV及以上的变压器(不含35/0.4KV的配变)必须进行,读取1分钟时的泄漏电流。
5.6.2试验时的加压部位与测量绝缘电阻相同,应注意套管表面的清洁及温度、湿度对测量结果的影响。
5.6.3对测量结果进行分析判断时,主要是与同类型变压器、各线圈相互比较,不应有明显变化。
5.6.4微安表接于高压侧时,绝缘支柱应牢固可靠、防止摇摆倾倒。
5.6.5试验设备的布置要紧凑、连接线要短,宜用屏蔽导线,既要安全又便于操作;对地要有足够的距离,接地线应牢固可靠。
5.6.6应将被试品表面擦拭于净,并加屏蔽,以消除被试品表面脏污带来的测量误差。
5.6.7能分相试的被试品应分相试验,非试验相应短路接地。
5.6.8试验电容量小的被试品应加稳压电容。
5.6.9试验结束后,应对被试品进行充分放电。
5.6.10泄漏电流过大,应先检查试验回路各设备状况和屏蔽是否良好,在排除外因之后,才能对被试品作出正确的结论。
5.6.11泄漏电流过小,应检查接线是否正确,微安表保护部分有无分流与断线。
5.6.12高压连接导线对地泄漏电流的影响
由于与被试品连接的导线通常暴露在空气中(不加屏蔽时),被试品的加压端也暴露在外,所以周围空气有可能发生游离,产生对地的泄漏电流,尤其在海拔高、空气稀薄的地方更容易发生游离,这种对地泄漏电流将影响测量的准确度。用增加导线直径、减少尖端或加防晕罩、缩短导线、增加对地距离等措施,可减少对测量结果的影响。
5.6.13空气湿度对表面泄漏电流的影响
当空气湿度大时,表面泄漏电流远大于体积泄漏电流,被试品表面脏污易于吸潮使表面泄漏电流增加,所以必须擦净表面,并应用屏蔽电极。
6.空载电流、空载损耗
6.1试验目的
检查变压器磁路
6.2该项目适用范围
交接时、更换绕组后、必要时
6.3试验时使用的仪器
调压器、升压变压器、电流互感器、电压互感器、电流表、电压表、瓦特表等
6.4试验方法
6.4.1额定条件下的试验
试验采用图6-1到6-3的接线。所用仪表的准确度等级不低于0.5级,并采用低功率因数功率表(当用双功率表法测量时,也允许采用普通功率表)。互感器的准确度应不低于0.2级。
根据试验条件,在试品的一侧(通常是低压侧)施加额定电压,其余各侧开路,运行中处于地电位的线端和外壳都应妥善接地。空载电流应取三相电流的平均值,并换算为额定电流的百分数,即
I0%=[(I0A+I0B+ I0C)/3 In]×% (6-1)
式中I0A、I0B、I0C——三相实测的电流; In——试验加压线圈的额定电流试验所加电压应该是实际对称的,即负序分量值不大于正序值的5%;试验应在额定电压、额定频率和正弦波电压的条件下进行。但现场实际上难以满足这些条件,因而要尽可能进行校正,校正方法如下:
(一)试验电压
变压器的铁损耗可认为与负载大小无关,即空载时的损耗等于负载时的铁芯损耗,但这是额定电压时的情况。如电压偏离额定值,空载损耗和空载电流都会急剧变化。这是因为变压器铁芯中的磁感应强度取在磁化曲线的饱和段,当所加电压偏离额定电压时,空载电流和空载损耗将非线性地显著增大或减少,这中间的相互关系只能由试验来确定。 由于试验电源多取自电网,如果电压不好调,则应将分接开关接头置于与试验电压相应的位置试验,并尽可能在额定电压附近选做几点,例如改变供电变压器的分接开关位置,再将各电压下测得的P0和I0作出曲线,从而查出相应的额定电压下的数值。如在小于额定电压,但不低于90%额定电压值的情况下试验,可用外推法确定额定电压下的数值,即在半对数坐标纸上录制I0、P0、与U的关系曲线,并近似地假定I0、P0是U的指数函数,因而曲线是一条直线,可延长直线求得UN;下的I0、P0。应指出,这一方法会有相当误差,因为指数函数的关系并不符合实际。
(二)试验电源频率
变压器可在与额定频率相差±5%的情况下进行试验,此时施加于变压器的电压应为
U1=UN×(f1/ fN)= UN×(f1/ 50) (6-2)
f1——试验电源频率;fN——额定频率,即50HZ
U1——试验电源电压; UN——额定电压
由于在f1下所测的空载电流I1接近于额定频率下的I0,所以这样测得的空载电流无须校正时,空载损耗按照下式换算
P0=P1(60/ f1-0.2)(6-3)
P1——在频率为f1、电压为U1时测得的空载损耗。
6.4.2低电压下的试验
低电压下测量空载损耗,在制造和运行部门主要用于铁芯装配过程中的检查,以及事故和大修后的检查试验。主要目的是:检查绕组有无金属性匝间短路;并联支路的匝数是否相同;线圈和分接开关的接线有无错误;磁路中铁芯片间绝缘不良等缺陷。 试验时所加电压,通常选择在5%~10%额定电压范围内。低电压下的空载试验,必须计及仪表损耗对测量结果的影响,而且测得数据主要用于相互比较,换算到额定电压时误差较大,可按照下式换算
P0=P1(UN/ U1)n(6-4)
式中U1——试验时所加电压;Un——绕组额定电压;
P1——电压为 U’时测得的空载损耗;P0——相当于额定电压下的空载损耗;
n——指数,数值决定于铁芯硅钢片种类,热轧的取1.8,冷轧的取1.9~2。
对于一般配电变压器或容量在3200kVA以下的电力变压器,对值可由图6-4查出。
6.4.3三相变压器分相试验
上一篇:电缆耐压诊断发生器(电缆主绝缘)
快速跳转