首页 > 新闻中心 > 高压技术<

高压技术
自动异频介损测量装置(电科院)
时间:2023-04-24

中试控股技术研究院鲁工为您讲解:自动异频介损测量装置(电科院)

ZSDX-8000高压介质损耗测试装置(CVT变比)

操作简单,仪器配备了高端的全触摸液晶显示屏,超大全触摸操作界面,每过程都非常清晰明了,操作人员不需要额外的专业培训就能使用。轻
轻点击一下就能完成整个过程的测量,是目前非常理想的智能型介损测量设备。

参考标准:DL/T 962-2005,DL/T 474.3-2018

高压介质损耗测试装置(CVT变比)ZSDX-8000高压介质损耗测试装置是发电厂、变电站等现场或实验室测试各种高压电力设备介损正切值及电容量的高精度测试仪器。仪器为一体化
结构,内置介损测试电桥,可变频调压电源,升压变压器和SF6 高稳定度标准电容器。测试高压源由仪器内部的逆变器产生,经变压器升压后用
于被试品测试。频率可变为50.0Hz、47.5Hz\52.5Hz、45.0Hz\55.0Hz、60.0Hz、57.5Hz\62.5Hz、55.0Hz\65.0Hz,采用数字陷波技术,避开了工
频电场对测试的干扰,从根本上解决了强电场干扰下准确测量的难题。同时适用于全部停电后用发电机供电检测的场合。该仪器配以绝缘油杯加温控装置可测试绝缘油介质损耗。

中试控股始于1986年 ▪ 30多年专业制造 ▪ 国家电网.南方电网.内蒙电网.入围合格供应商

技术参数
1 使用条件 -15℃∽40℃ RH<80%
2 抗干扰原理 变频法
3 电    源 AC 220V±10% 允许发电机
4 高压输出 0.5KV∽10KV 每隔0.1kV
精    度 2%
最大电流       200mA
容    量 2000VA
5 自激电源 AC 0V∽50V/15A 单  频   50.0HZ、60.0HZ 
自动双变频
45.0HZ/55.0HZ   47.5HZ/52.5HZ 
55.0HZ/65.0HZ   57.5HZ/62.5HZ
6 分 辨 率 tgδ: 0.001% Cx: 0.001pF
7 精    度 △tgδ:±(读数*1.0%+0.040%)
△C x :±(读数*1.0%+1.00PF)
8 测量范围 tgδ 无限制
C x 15pF < Cx < 300nF
10KV Cx < 60  nF
 5KV Cx < 150 nF
  1KV Cx < 300 nF
CVT测试 Cx < 300 nF
9 LCR测量范围 电感L>20H(2kV)             电阻R>10KΩ(2kV)
LCR测量精度 1% 角度分辨率 0.01
10 CVT变比范围 10∽10000
CVT变比精度 1% CVT变比分辨率 0.01
11 外型尺寸(主机(mm) 350(L)×270(W)×315(H)
外型尺寸(附件)(mm) 350(L)×270(W)×160(H)
12 存储器大小 200 组 支持U盘数据存储
13 重量(主机) 22.75Kg
重量(附件箱) 5.25Kg
面板说明
1、紧急停机按钮及高压指示灯
2、U盘接口
3、总电源开关
4、AC220V电源输入插座
5、Cn标准电容输入插座
6、Cx试品输入插座
7、触摸显示屏
8、接地接线柱
9、ES自激输出
10、打印机
11、接线图
12、高压输出HV插座
13、高压线屏蔽接地端子
图 4—2
4.1、紧急停机按钮及高压指示灯
安装位置:如图4—1—①。
功    能:在仪器测试过程中有高压输出时,遇紧急情况需要断开高压输出,即可按下紧急停机按钮立即从内部切断高压输出;按钮内置指示灯
作为高压输出指示灯。 
4.2、U盘接口
安装位置:如图4—1—②。
功    能:可把仪器内部保存的测试数据导入并保存到U盘中。
注    意:数据传输过程当中严禁拔出U盘,只有当数据传输完毕后并且液晶屏上出现拔出U盘的提示后,方可拔出U盘,否则有可能烧毁U盘。
4.3、总电源开关
安装位置:如图4—1—③。
功    能:打开此关,仪器上电进入工作状态。关闭此开关,也同时关闭仪器内部 
           所有电源系统,紧急情况应立即关闭此开关并拔掉输入电源线。
4.4、电源输入插座
安装位置:如图4—1—④。
功    能:提供仪器工作电源。(AC 220V±10%)
接线方法:使用标准插座与市电或发电机相连接。
    注    意:电源插座内部带有保险管保护装置,不正常情况下可烧毁保险管保使仪器断电,保护仪器内部。  
4.5、标准电容器输入Cn插座
安装位置:如图4—1—⑤。
功    能:外接标准测试信号。
接线方法:外标准测试时电缆芯线接标准电容测试端,电缆屏蔽层接标准电容器屏蔽极。外标准测试时不管是正接法还是反接法测量,标准电容
器接线方法不变。此方式用于外接高电压等级标准电容器,实现高电压介质损耗测量。
4.6、试品低压输入Cx插座
安装位置:如图4—1—⑥。
功    能:正接法时输入被试品测试信号。
接线方法:插座中心连接黑色信号线芯线;金属外壳接黑色信号线屏蔽层;正接法时芯线接被试品低压信号端,若被试品低压信号端有屏蔽极(
如低压端的屏蔽环),则可将屏蔽层接于屏蔽极,无屏蔽极时屏蔽层悬空。
注    意:? 在启动测试的过程中严禁拔下插头,以防被试品电流经人体入地。
  ? 用标准介损器或标准电容器检测正接法精度时,应使用全屏蔽插头 连接介损器或标准电容器,否则暴露的芯线可能受到干扰引起误差。
  ? 测试过程中应保证插座中心测试芯线与被试品低压端零电阻连接,否则可能引起测量结果的数据波动。
? 强干扰下拆除接线时,应在保持电缆接地状态下断开连接,以防感应电击。
4.7、触摸显示屏
安装位置:如图4—1—⑦。
功    能:全触摸大屏幕(120mm×90mm)中文菜显示,每一步操作清晰明了。
注    意:液晶屏应避免长时间阳光暴晒,避免重物挤压和利器划伤。
4.8、接地接线柱
安装位置:如图4—1—⑧。
功    能:仪器保护接地。
注    意:仪器内部自带接地保护装置,测试中应当保证可靠接入地网。否则仪器将自动产生保护锁死所有测试选项。      
4.9、ES自激输出
    安装位置:如图4—1—⑨。
    功    能:自激输出,仪器内部为自激输出变压器的一端(变压器另一端已接地),自激法测试CVT介损时连接到CVT的自激线圈(da)上,
dn接地,为CVT提供测量所需高压电源。
注    意: 因低压输出电流大,应采用仪器专用连接线连接到CVT二次绕组并使其接触良好,选择正、反接法测量时,此输出关闭。
4.10、打印机
安装位置:如图4—1—⑩。
功    能:显示可打印数据时,将光标移动至“打印”项按确认键打印。
注    意:打印机为全自动热敏打印机,打印纸宽55mm。更换打印纸时请使用热敏打印机专用打印纸,首先扳起打印机旁边角,打开打印机盖板
,然后按顺序将打印纸放入打印纸仓内并留少许部分在外面,最后合上打印机盖板。  
4.11、接线图
    安装位置:如图4—1—?。
    功    能:描叙测试接线方式的示意图。
注    意: 要注意接线方式和操作对应的功能,否则容易损坏仪器。
4.12、高压输出HV插座
安装位置:如图4—2—?,外设保护门。
功    能:仪器变频高压输出;检测反接线试品电流;内部标准电容器的高压端。
接线方法:插座中心连接红色高压线芯线;金属外壳连接红色高压线屏蔽层;正接法时芯线和屏蔽层都可以作加压线对被试品高压端加压;反接
法时只能用芯线对被试品高压端加压,若试品高压端有屏蔽极(如高压端的屏蔽环),则可将屏蔽层接于屏蔽极,无屏蔽极时屏蔽层悬空。
 注    意:? 在启动测试的过程中此插座带有高压有触电危险,绝对禁止触碰高压插座及与之相连的相关设备。
             ? 用标准介损器或标准电容器检测正接法精度时,应使用全屏蔽插头连接介损器或标准电容器,否则暴露的芯线可能受到干扰引起
误差。
? 测试过程中应保证插座中心红色高压线芯线与被试品高            压端零电阻连接,否则可能引起测量结果的数据波动。
4.13、高压线屏蔽接地端子
    安装位置:如图4—2—?。
    功    能:仪器测试时高压线抗干扰接地。
注    意: 接地线不要靠近高压接头,否则会引起高压放电,出现升压失败。测试时请不要关闭接地保护功能,仪器的接地必须可靠。

中试控股电力讲解测量介质损耗角正切值tg 有何意义?

介质损耗角正切值又称介质损耗因数或简称介损。测量介质损耗因数是一项灵敏度很高的试验项目,它可以发现电力设备绝缘整体受潮、劣化变质以及小体积被试设备贯通和未贯通的局部缺陷。例如:某台变压器的套管,正常tg 值为0.5%,而当受潮后tg 值为3.5%,两个数据相差7倍;

而用测量绝缘电阻检测,受潮前后的数值相差不大。由于测量介质损耗因数对反映上述缺陷具有较高的灵敏度,所以在电工制造及电力设备交接和预防性试验中都得到了广泛的应用。中试控股电力讲解变压器、发电机、断路器等电气设备的介损测试《规程》都作了规定。



U盘导出,可在任意一台PC机上通过我公司专用软件,查看和管理数据
不拆除CVT高压引线的情况下正确测量CVT的介质损耗值和电容值
自激电源:AC 0V∽50V/15A 45HZ/55HZ 55HZ/65HZ 47.5HZ/52.5HZ 自动双变频


1.2下面中试控股详细介绍网损计算法
1.2.1
均方根电流法
均方根电流法原理简单,易于掌握,对局部电网和个别元件的电能损耗计算或当线路出日处仅装设电流表时是相当有效的,尤其是在0.4-10kV配电网的电能损耗计算中,该法易于推广和普及,但缺点是负荷测录工作量庞大,需24h监测,准确率差,计算精度小,日由于当前我国电力系统运行管理缺乏自动反馈用户用电信息的手段,给计算带来困难,所以该法适用范围具有局限性。
1.2.2
节点等值功率法
节点等值功率法方法简单,适用范围广,对运行电网进行网损的理论分析时,所依据的运行数据来自计费用电能表,即使不知道具体的负荷曲线形状,也能对计算结果的最大可能误差作出估计,并且电能表本身的准确级别比电流表要高,又有严格的定期校验制度,因此发电及负荷24h的电量和其他运行参数等原始数据比较准确,且容易获取。这种方法使收集和整理原始资料的工作大为简化,在本质上,这种方法是将电能损耗的计算问题转化为功率损耗的计算问题,或进一步转化为潮流计算问题,这种方法相对比较准确而又容易实现,因而在负荷功率变化小大的场合下可用于任意网络线损的计算,井得到较为满意的结果。但缺点是该法实际计算过程费时费力,且计算结果精度低。因为该法只是通过将实际连续变化的节点功率曲线当作阶梯性变化的功率曲线处理或查负荷曲线形状系数的方式获取节点等效功率近似地考核系统状态。
二、降损措施
1.
简化电网的电压等级.减少重复的变电容量城市电网改造工程要求做到:从500kV380/220V之间只经过4次变压。除东北部分电网采用500kV220kV63kV10kV380/220V5个等级外。其它电网采用500(330)kV220kV110(35)kV10kV380/220V5个等级。即高压配电电压在110kV35kV之间选择其中之一作为发展方向。非发展方向的网络采用逐步淘汰或升压的措施。
2
.提高输电容量,优化利用发电资源
建设新的交流或直流输电线路,升级现有线路和使现有线路的运行逼近它们的热稳定极限,是提高输电容量的三种主要方法。
当采用架空输电线路,远距离大容量传输电能时,高压直流输电线路(HVDC)的效率比高压交流输电线路更高一些。在同样的电压等级下,HVDC系统的输电容量是交流线路的25倍;而当传输的功率相同时,由于直流线路不传输无功功率,换流器的损耗仅为传输功率的1.0%1.5%,因此HVDC输电系统的总损耗要小于交流系统。

提高现有线路的输电容量,可以提高电压等级,增加导线截面积及每相的分裂导线数,或采用耐高温线材。最近耐高温线材技术的进步,为减轻中短距离输电线的热稳定极限的限制提供了一条有效途径。采用耐高温线材的输电线传输的电流是普通线材输电线(例如铝包钢增强型导线)23倍,而它的截面直径与普通导线相同,不会增加杆塔等支撑结构的负担。在许多情况下,由于电压约束、稳定性约束和系统运行约束的限制,输电线路的运行容量远低于线路的热稳定极限。许多技术即针对如何提高输电容量的利用程度而被发明出来。例如,当发生“并联支路潮流”或“环路潮流”问题时,调相器常被用来消除支路的热稳定限制。串联电容补偿是另一种远距离高压交流输电线路常用的提高输电容量的方法。现在人们利用大功率电力电子技术开发了一系列设备,统称为柔性交流输电设备,它可以使人们更好地利用输电线、电缆和变压器等相关设备的容量。据估计,柔性交流输电设备的推广应用,可以将现在受电压约束和稳定约束限制的线路的最大输电容量提高20%~40%

3.合理进行无功补偿,提高电网的功率因素
无功补偿按补偿方式可分为集中补偿和分散补偿。
3.1
集中补偿:
在变电站低压侧,安装无功补偿装置(电容器),安装配置容量按负荷高峰时的无功功率平衡计算,安装电容补偿装置的目的是根据负荷的功率因数的高低而合理及时投切电容器,从而保证电网的功率因数接近0.9,减少高压电网所输送的无功功率,使输电线路的电流减少,从而降低高压电网的网损。
3.2
分散补偿:
由于电力用户所使用的电器设备大多都是功率因数较低,例如工厂的电动机、电焊机的功率因数更低,为提高功率因数,要求大电力用户的变压器低压侧安装电力电容器,其补偿原理与变电站的无功补偿大致相同,不同的是用户就地补偿采用随机补偿,利用无功补偿自动投人装置及时、合理地投切无功补偿电容器,保证10kV电网的功率因数符合要求(接近0.9),从而减少10kV配电线路的电能损耗。例如:10kV线路末端进行无功补偿,如补偿前0.7到补偿后功率因数达到0.9,经过补偿后,电能损失减少了39.5%,节能效果可见一斑。
4.
抓紧电网建设,更换高耗能设备
导线的电阻和电抗与其截面积成反比.因此,截面积小的线路电阻和电抗大,在输送相同容量负荷情况下,其有功和无功损耗大。目前,配电网,特别是农网中,部分线路线径截面小,负荷重,导致线损率偏高。此外,配电网中还存在相当数量的高耗能配电变压器,其空载损耗P、短路损耗P、空载电流百分值I%、短路电压百分比U%等参数偏大.根据这些情况,应抓紧网架建设,强化电网结构,并按配电网发展规划,有计划、有步骤地分期分批进行配电设施的技术改造,更换配电网中残旧线路、小截面线路以及高耗能变压器。
降低输送电流、合理配置变电器
5.1
提高电网的电压运行水平,降低电网的输送电流。若变电站主变采用有载调压方式调压,调压比较方便,根据负荷情况,随时调节主变压器的分接开关保证电网电压处于规程规定的波动范围之内,最好略为偏高,避免负荷高峰期电网的电压水平过低而造成电能质量的下降,同时也可提高线路末端的电压,使线路电流下降,从而达到降损目的,例如:电压水平从额定值的95%升到105%时,线路所输送的电流降低9.5%,电能损耗下降18.2%。同样道理,对于用户配电变压器及10kV公用配变,可根据季节的变化,在规程规定电压波动范围内可合理调节配变的分接开关,尽量提高配网的电压运行水平,同样达到降损的目的。另外,可根据负荷的大小,利用变压器并列经济运行曲线分析负荷情况,合理切换,实行并列运行或是一单台主变运行,减少变电站的主变变损。
5.2
提高输配电网效率的另一项关键技术,就是提高电气设备的效率。其中,提高配网变压器的效率尤其具有重大意义。从节能的观点来看,因为配网变压器数量多,大多数又长期处于运行状态,因此这些变压器的效率哪怕只提高千分之一,也会节省大量电能。基于现有的实用技术,高效节能变压器的损耗至少可以节省15%
通常在评价变压器的损耗时,要考虑两种类型的损耗:铁芯损耗和线圈损耗。铁芯损耗通常是指变压器的空载损耗。因为需要在变压器的铁芯中建立磁场,所以不论负荷大小如何,它们都会发生。线圈损耗则发生在变压器的绕组中,并随负荷的大小而变化。因此它又被称为负荷损耗。

 

 

 

 

 

 

 

 

销售热线

  • 400-046-1993全国统一服务热线
  • 销售热线:027-83621138
  • 售后专线:027-83982728
  • 在线QQ咨询: 149650365      
  • 联系我们

 

增值服务

  • 三年质保,一年包换,三个月试用

 

 

 

 


 

版权所有:湖北中试高测电气控股有限公司 1999 鄂TCP备9912007755号