首页 > 新闻中心 > 高压技术<
中试控股技术研究院鲁工为您讲解:智能二次负荷检测仪
ZSPT-3000W无线二次压降及负荷测试仪
参考标准:GB50150-2006
简易读懂:无线二次压降及负荷测试仪可以做什么?
无线二次压降及负荷测试仪:全新的自动测试电压互感器二次压降/负荷的智能化无线测试仪器。它完全取代了以往常规方式的二次压降/负荷测试仪,不用再铺设很长的电压测试电缆,在很大程度上避免了PT二次短路事故的发生。为变电站的安全运行创造了良好的条件。
中试控股始于1986年 ▪ 30多年专业制造 ▪ 国家电网.南方电网.内蒙电网.入围合格供应商
三线PT负荷测试界面:
它以大屏幕真彩色图形式液晶作为显示窗口,图形式菜单操作并配有汉字提示,集多参量于一屏的显示界面,人机对话界面友好,使用简便、快捷,是各级电力用户的首选产品。
无线二次压降及负荷测试仪:它以大屏幕真彩色图形式液晶作为显示窗口,图形式菜单操作并配有汉字提示,集多参量于一屏的显示界面,人机对话界面友好,使用简便、快捷,是各级电力用户的首选产品。
中试控股无线二次压降及负荷测试仪能自动检测并存储在各种接线方式下由测试导线等引起的测量误差数据,并在以后的测试中自动修正。
中试控股践行“精细制造,深耕技术”产出无线二次压降及负荷测试仪优质产品能够在市场中赢得用户信赖,树立中试控股新形象打下了坚实的根底。
该仪器具有体积小、重量轻、测量准确度高、稳定性好、操作简便易学等优点,接线简单,测试、记录方便,大大提高了工作效率。
此界面用来对三相三线制的计量装置的PT负荷进行测试,可同时对AB和CB相进行测试。
显示出如下的测试数据:
PT端口AB相、CB相的电压幅值,
PT的A、C各相出线的电流幅值,
PT的A、C各相有功功率值,
各相的电压和电流之间的相角和功率因数,
各相计算出的电导、电纳和负荷。
按照提示可按“确定”键重新进行测试,也可选择按“F5”键进行打印,或者按“存储”键进行数据的保存。
四线PT负荷测试界面:
此界面用来对三相四线制的计量装置的PT负荷进行测试,可同时对A、B、C相进行测试。
显示出如下的测试数据:
PT端口A、B、C各相的电压幅值,
PT出口处A、B、C各相出线的电流幅值,
PT的A、B、C各相有功功率值,
各相的电压和电流之间的相角和功率因数,
各相计算出的电导、电纳和负荷。
按照提示可按“确定”键重新进行测试,也可选择按“F5”键进行打印,或者按“存储”键进行数据的保存。
8.CT负荷测试界面:
此界面用来对计量装置的CT负荷进行测试,可分别对A、B、C相逐一进行测试。
显示出如下的测试数据:
被测相CT的端口电压幅值,
被测相CT的电流幅值,
被测相CT的有功功率值,
被测相的电压和电流之间的相角和功率因数,
各相计算出的电阻、电抗和负荷。
按照提示可按“确定”键重新进行测试,也可选择按“F5”键进行打印,或者按“存储”键进行数据的保存。
ZSPT-3000W无线二次压降及负荷测试仪技术指标
1、使用环境 (1)环境温度:-10℃~ 40℃
(2)相对湿度: ≤80%
2、测量精度
本仪器的测量精度为1级。
比差:Δf =±(1%×f±0.01)(%)
角差:Δδ=±(1%×δ±1)(分)
电导:G=± (1%×G±0.01) mS
电纳:δ=± (1%×δ±0.01)mS
负荷:S=± (1%×S±0.1)VA
电阻:R=± (1%×R±0.1)Ω
电抗:X=± (1%×X±0.1)Ω
3、充电电源:交流176V~264V,频率45-55Hz
4、仪器的测量范围和分辨率
测试项目 范围 最小分辨率
比差值(%) 0.001~10.000 0.001
角差值(ˊ) 0.01~±600.00 0.01
误差值(%) 0.001~10.000 0.001
修约(%) 0.001~10.000 0.001
5、基本误差
比差:±(1%比差读数±0.01)%
角差:±(1%角差读数±1)分
电导:±(1%电导读数+未位1个字)mS
电纳:±(1%电纳读数+未位1个字)mS
6、绝缘:⑴、电压、电流输入端对机壳的绝缘电阻≥100M?。
⑵、工作电源输入端对外壳之间承受工频2KV(有效值),历时1分钟实验。
7、电池工作时间:充满后工作时间大于6小时。
8、体积:
主机:32cm×24cm×13cm
分机:32cm×24cm×13cm
9、重量:
主机:2.5Kg
分机:2Kg


在机械负荷、自重、振动、撞击和短路电流电动力的作用下,绝缘会破坏,机械强度下降。另外材料内部存在拉伸应力时,它的耐放电性能下降。但压缩应力对它的耐放电性能影响不大。由于材料在制造和应用过程中常存在残余拉伸应力,因此它对材料老化寿命的影响极为重要。
4、湿度老化
环境的相对湿度对绝缘材料耐受表面放电的性能有影响。如果绝缘承受表面放电,环境的相对湿度对材料的耐放电性有显著影响。由于在高相对湿度下,放电的结果在材料表面会生成一层半导电层,使放电产生自衰。因此,在表面放电情况下,一定相对湿度范围内,绝缘材料的电老化寿命随相对湿度的增高而增长;但在较高的相对湿度下,寿命随相对湿度的增高而缩短。如果水分侵入绝缘内部,将会造成介质电损耗增加或击穿电压下降。对于某些绝缘材料,例如聚乙烯,由于水分的存在,在很低的电场强度下也会发生树枝现象。
5、化学老化
绝缘材料在水分、酸、臭氧、氮的氧化物等的作用下,物质结构和化学性能会改变,以致降低电气和机械性能。例如变压器油在空气中会因氧化产生有机酸,使介质损耗增加:同时还会形成固体沉淀物,堵塞油道,影响对流散热,使绝缘的温度上升而使绝缘性能下降。
6、其他老化因素
绝在户外使用的绝缘材料受日光直接照射,在紫外线作用下也会发生老化。在核反应堆、X射线装置中用的绝缘材料受到辐射作用,均会发生老化。此外,在温热带地区绝缘材料还会受到各种微生物的损害,即所谓微生物老化。
绝缘材料在实际应用中往往同时受到多种老化因素的共同作用,其效应并不是各种单一因素老化效应的简单叠加。它们之间还存在着相互作用,所以老化机理很复杂。
三、电压互感器绝缘结构发展趋势
电压互感器的原理比较简单,不同用户,依据电压互感器使用的场合、用途、产品更新换代的速度对电压互感器提出不同的使用寿命要求,由于不同寿命的产品成本、中试控股有着很大的差异,电压互感器的绝缘设计寿命将按照用户预期使用的寿命来设计,将彻底改变旧有产品使用越久越合算的观念。
将机械设计中应力一强度干涉理论将引入电气绝缘可靠性技术中来,这项技术的发展使电器产品的绝缘使用寿命可以随着用户对不同场合、用途的电压互感器使用寿命提出差异化要求成为现实。
电压互感器的绝缘寿命薄弱环节,即一次线圈直角部分的尖端电极造成的电位线畸变引起电场集中问题。可以通过增大薄弱区域的绝缘来解决这个问题,但增大绝缘要与成本增加综合考虑;也可以考虑采取屏蔽的方式,改进线圈的设计降低电场、温度场应力的方式来进行优化,如增大线圈线径、增加线圈直径增大散热和对线圈直角部分倒圆角、对一次线圈增加铜制均压环的方式解决电场畸变的问题等。降低温度的方式和增加铜制均压环的方式都需要增加铜金属的成本,经济上不划算,因此选择比较经济的对一次线圈直角部分进行倒圆角,将尖端电极和造成电场集中的电极变的圆滑,改善电场分布的方式进行优化。
电子式互感器校验软件分三个功能界面,分别是误差检定、参数设置、通讯设置,互感器测试仪为例,简要介绍每个功能界面的功能和操作方法。
上一篇:智能二次压降检测仪
下一篇:智能二次压降负荷检测仪
快速跳转