首页 > 新闻中心 > 高压技术<
中试控股技术研究院鲁工为您讲解:全自动压降负荷测试仪
ZSPT-3000W无线二次压降及负荷测试仪
参考标准:GB50150-2006
简易读懂:无线二次压降及负荷测试仪可以做什么?
无线二次压降及负荷测试仪:全新的自动测试电压互感器二次压降/负荷的智能化无线测试仪器。它完全取代了以往常规方式的二次压降/负荷测试仪,不用再铺设很长的电压测试电缆,在很大程度上避免了PT二次短路事故的发生。为变电站的安全运行创造了良好的条件。
中试控股始于1986年 ▪ 30多年专业制造 ▪ 国家电网.南方电网.内蒙电网.入围合格供应商
ZSPT-3000W无线二次压降及负荷测试仪 使用方法
它以大屏幕真彩色图形式液晶作为显示窗口,图形式菜单操作并配有汉字提示,集多参量于一屏的显示界面,人机对话界面友好,使用简便、快捷,是各级电力用户的首选产品。
无线二次压降及负荷测试仪:它以大屏幕真彩色图形式液晶作为显示窗口,图形式菜单操作并配有汉字提示,集多参量于一屏的显示界面,人机对话界面友好,使用简便、快捷,是各级电力用户的首选产品。
中试控股无线二次压降及负荷测试仪能自动检测并存储在各种接线方式下由测试导线等引起的测量误差数据,并在以后的测试中自动修正。
中试控股践行“精细制造,深耕技术”产出无线二次压降及负荷测试仪优质产品能够在市场中赢得用户信赖,树立中试控股新形象打下了坚实的根底。
该仪器具有体积小、重量轻、测量准确度高、稳定性好、操作简便易学等优点,接线简单,测试、记录方便,大大提高了工作效率。
1.无线三线自校方法:
在测试之前,为了保证测量数据的准确性,最好每次都要进行仪器的自校,方法为: 主机和分机的Ua、Un、Uc电压端子同时接到PT侧的A、B、C相电压线上;主分机的端子要一一对应,但请注意:B相电压要接到主机和分机黑色的Un端子。如图十九所示:
图十九
将电台天线和GPS天线都接到相应接口。电台天线放置在尽量高的位置。GPS天线一定要放到户外,且正上方不能有任何的遮盖,否则会影响GPS信号的接收。
首先,主机和分机都进入GPS状态屏,观察GPS信号的质量,当主机、分机的跟踪卫星定位方式为2D或3D时,方可正常测试。
分机选择“GPS测试”,主机选择“三线压降”项目,按“开始”键即自动测试,记数次数累计到60后,自动停止。
按“自检”键可将仪器根据目前的状态校准。
2.无线三线压降测试方法:
将分机放在PT侧,主机放在Wh侧,同时测量两侧的电压(主机、分机电压信号按照图二十所示接线)。
PT侧A、B、C相电压线分别接到分机的Ua、Un、Uc电压端子上;
Wh侧A、B、C相电压线分别接到主机的Ua、Un、Uc电压端子上。
请注意:B相电压要接到黑色的Un端子。
图二十
将电台天线和GPS天线都接到相应接口。电台天线放置在尽量高的位置。GPS天线一定要放到户外,且正上方不能有任何的遮盖,否则会影响GPS信号的接收。
首先,主机和分机都进入GPS状态屏,观察GPS信号的质量,当主机、分机的跟踪卫星定位方式为2D或3D时,方可正常测试。
分机选择“GPS测试”,主机选择“三线压降”项目,按“开始”键即自动测试,记数次数累计到60后,自动结束。
可选择将测试结果打印出来,或保存在内存中。
3.无线四线自校方法:
按照图二十一接线:
图二十一
将电台天线和GPS天线都接到相应接口。电台天线放置在尽量高的位置。GPS天线一定要放到户外,且正上方不能有任何的遮盖,否则会影响GPS信号的接收。
首先,主机和分机都进入GPS状态屏,观察GPS信号的质量,当主机、分机的跟踪卫星定位方式为2D或3D时,方可正常测试。
分机选择“GPS测试”,主机选择“四线压降”项目,按“开始”键即自动测试,记数次数累计到60后,自动停止。
按“自检”键可将仪器根据目前的状态校准。
4.无线四线压降测试方法:
将分机放在PT侧,主机放在Wh侧,同时测量两侧的电压(主机、分机电压信号按照图二十二所示接线)。
PT侧A、B、C、N相电压线分别接到分机的Ua、Ub、Uc、Un电压端子上;
Wh侧A、B、C、N相电压线分别接到主机的Ua、Ub、Uc、Un电压端子上。
请注意:各相电压要按颜色接到相应的电压端子上。
分机选择“GPS测试”,主机选择“四线压降”项目,按“开始”键即自动测试,记数次数累计到60后,自动结束。
可选择将测试结果打印出来,或保存在内存中。
图二十二
5.外部同步信号无线测试
当GPS信号无法正常接收时,可用外部同步信号进行测试。利用随机所配备的专用外同步信号线进行同步,其他接线不变。
不同的是分机要选择“外部同步信号测试项目”。
6.三线PT负荷测试方法:
用主机在PT侧进行测试。其中电压用PT侧通道测量,电流用钳形电流互感器测量,按图二十三接线:
图二十三
PT侧A、B、C相电压线分别接到主机的PT侧电压端子Ua、Un、Uc上;用A、C两把钳形电流互感器分别接到PT侧A、C相上,注意:相别一定要对应,否则测试结果不正确。
选择“三线PT负荷”项目进行测试,按“开始”键即自动测试,记数次数累计到60后,自动结束。可打印测试结果。
7.四线PT负荷测试方法:
用主机在PT侧进行测试。其中电压用PT侧通道测量,电流用钳形电流互感器测量,按图二十四接线:
图二十四
PT侧A、B、C、N相电压线分别接到主机的PT侧电压端子Ua、Ub、Uc、Un上;用三把钳形电流互感器分别接到PT侧各相上,注意:相别一定要对应,否则测试结果不正确。
选择“四线PT负荷”项目进行测试,按“开始”键即自动测试,记数次数累计到60后,自动结束。可打印测试结果。
8.CT负荷测试方法:
用主机在CT端口侧进行测试。其中电压用A相电压通道测量,电流用A相钳形电流互感器测量,按图二十五接线:
图二十五
注意:相别一定要对应,否则测试结果不正确。
选择“CT负荷”项目进行测试,按“开始”键即自动测试,记数次数累计到60后,自动结束。可打印测试结果。
ZSPT-3000W无线二次压降及负荷测试仪技术指标
1、使用环境
(1)环境温度:-10℃~ 40℃
(2)相对湿度: ≤80%
2、测量精度
本仪器的测量精度为1级。
比差:Δf =±(1%×f±0.01)(%)
角差:Δδ=±(1%×δ±1)(分)
电导:G=± (1%×G±0.01) mS
电纳:δ=± (1%×δ±0.01)mS
负荷:S=± (1%×S±0.1)VA
电阻:R=± (1%×R±0.1)Ω
电抗:X=± (1%×X±0.1)Ω
3、充电电源:交流176V~264V,频率45-55Hz
4、仪器的测量范围和分辨率
测试项目 范围 最小分辨率
比差值(%) 0.001~10.000 0.001
角差值(ˊ) 0.01~±600.00 0.01
误差值(%) 0.001~10.000 0.001
修约(%) 0.001~10.000 0.001
5、基本误差
比差:±(1%比差读数±0.01)%
角差:±(1%角差读数±1)分
电导:±(1%电导读数+未位1个字)mS
电纳:±(1%电纳读数+未位1个字)mS
6、绝缘:⑴、电压、电流输入端对机壳的绝缘电阻≥100M?。
⑵、工作电源输入端对外壳之间承受工频2KV(有效值),历时1分钟实验。
7、电池工作时间:充满后工作时间大于6小时。
8、体积:
主机:32cm×24cm×13cm
分机:32cm×24cm×13cm
9、重量:
主机:2.5Kg
分机:2Kg

对负荷不太大的,一般于按负荷估算而确定电压互感器的容量
据当前各类继电保护(数字式微机等),测量仪表和计量装置的厂家技术资料和现场实测,每个元件(线路、变压器等),每个电压等级的功率消耗一般不超过下述范围:
继电保护3~5VA(数字式微机保护RCS-9000系列,查说明书只有0.5VA/相);测量仪表:2~4VA;计量装置:4~6VA(110kV及以下电压等级)。按照上述估计数据,母线用电压互感器二次相负荷每绕组不超过50VA,总容量不超过100VA;线路用电压互感器相负荷每绕组不超过10VA,总容量不超过30VA。
对于较复杂的大型变电所,而要求精确计算出电压互感器的实际负载时,则应按设计手册中的表20~25和表20~26中规定的公式进行验算。
Ⅲ、用估计法对电压互感器容量选择例举:、
设某变电所10kⅠ段Ⅱ段母线各有出线7条,所设保护、测量、计量装置类型均同,试确定10kVⅠ段Ⅱ段母线电压互感器容量
考虑裕度和接触电阻选用100VA即可。一般10kV单母线上出线超过7条,按一次设计有关规定即要分母。以一次系统设计图而定线路数和元件。
同理35kV母线、110母线用电压互感器容量估算,也可根据一次系统设计,视其出线条数和元件(变压器)定数,在视所用保护、测量、计量装置类型,直接查照该装置提供的交流电压回路消耗的功率或参照上述数据,代入计算。
110kV以上电压等级的(220kV~500kV),按超高压系统对电压互感器要求而选型。需再进一步学习和探讨。
不管是老标准还是新规程,都把电流互感器交接时和更换绕组后的现场变比检查试验列为重要试验项目。虽然电流互感器变比的准确度应由制造部门保证,但由于种种原因,现场试验时偶而也能检查出错误(大多是抽头引错)。因此现场变比检查试验成为多年不变的项目。
电流互感器工作原理大致与变压器相同,不同的是变压器铁心内的交变主磁通是由一次线圈两端交流电压所产生,而电流互感器铁心内的交变主磁通是由一次线圈内电流所产生,一次主磁通在二次线圈中感应出二次电势而产生二次电流。
从电流互感器工作原理可知:决定电流互感器变比的是一次线圈匝数与二次线圈匝数之比,影响电流互感器变比误差的主要原因有:(1)电流的大小,比差和角差随二次电流减小而增大;(2) 二次负荷的大小,比差和角差随二次负荷减小而减小;(3)二次负荷功率因数,随着二次负荷功率因数的增大,比差减小而角差增大;(4) 电源频率的影响;(5)其它因素。电流互感器内部参数也可能引起变比误差,如二次线圈内阻抗、铁心截面、铁心材料、二次线圈匝数等,但这是由设计和制造决定的。
电流互感器变化的误差试验应由制造厂在出厂试验时完成或在试验室进行。而电流互感器变比现场试验属于检查性质,即不考虑上述影响电流互感器变比误差的原因而重点检查匝数比。根据电工原理,匝数比等于电压比或电流比之倒数。因此测量电压比和测量电流比都可以计算出匝数比。
1 试验方法分析
现根据试验接线图和等值电路图分别讨论电压法和电流法检查电流互感器变化试验的原理和特点。
1.1 电流法
1.1.1 试验原理
电流法检查电流互感器变比试验接线图
——电流源包括 1 台调压器、1 台升流器;L1、L2——电流互感器一次线圈2 个端子;K1、K2——电流互感器二次线圈2个端子;A1——电流表(测量电流互感器一次电流);A2——电流表(测量电流互感器二次电流)
电流法检查电流互感器变比等值
——电流源;A——电流表;I1——电流互感器的一次电流;I2′——折算到一次侧的电流互感器二次电流;r1、x1——电流互感器一次线圈电阻、漏抗;r2′、x2′——折算到
一次的电流互感器二次线圈电阻、漏抗;Zm——电流互感器激磁阻抗
当电流互感器正常运行时二次线圈处于短路状态,铁心磁密很低,即Zm很大。从等值电路图可知,当Zm很大时,I1=I2′。
1.1.2 电流法试验的特点
电流法的优点是基本模拟电流互感器实际运行(仅是二次负荷的大小有差别),从原理上讲是一种无可挑剔的试验方法,同时能保证一定的准确度,也可以说是一种容易理解的试验方法。但是随着系统容量增加,电流互感器电流越来越大,可达数万安培。现场加电流至数百安培已有困难,数千安培或数万安培几乎不可能。降低一些试验电流对减小试验容量没有多大意义,降低太多则电流互感器误差骤增。
1.2 电压法
1.2.1 电压法试验原理
电压法检查电流互感器变比试验接线图如图3所示。
——电压源(1 台调压器);L1、L2——电流互感器一次线圈2个端子;K1、K2——电流互感器二次线圈2个端子;V——电压表,测量电流互感器二次电压;mV——毫伏表,测量电流互感器一次电压
电压法检查电流互感器变比等值电路图如图4所示。
——电压源;V——电压表;mV——毫伏表;I0——电流互感器激磁电流;U1——电流互感器一次电压;U2′——折算到一次侧的电流互感器二次电压;r1、x1——电流互感器一次线圈电阻、漏抗;r2′、x2′——折算到一次侧的电流互感器二次线圈电阻、漏抗;Zm——电流互感器激磁阻抗
当电压法测电流互感器变比时,一次线圈开路,铁心磁密很高,极易饱和。电压U2′稍高,励磁电流I0增大很多。
上一篇:全自动负荷测试仪
下一篇:全自动负荷压降测试仪
快速跳转