首页 > 新闻中心 > 高压技术<
中试控股技术研究院鲁工为您讲解:互感器负荷压降测试系统
ZSPT-2000Y电压互感器二次压降负荷测试仪
参考标准:GB50150-2006
简易读懂:电压互感器二次压降负荷测试仪可以做什么?
电压互感器二次压降负荷测试仪:电能计量综合误差过大是电能计量中普遍存在的一个关键问题。电压互感器二次回路压降引起的计量误差往往是影响电能计量综合误差的最大因素。所谓电压互感器二次压降引起的误差,
就是指电压互感器二次端子和负载端子之间电压的幅值差相对于二次实际电压的百分数,以及两个电压之间的相位差的总称。
中试控股始于1986年 ▪ 30多年专业制造 ▪ 国家电网.南方电网.内蒙电网.入围合格供应商
ZSPT-2000Y电压互感器二次压降负荷测试仪技术指标
1、使用环境
该仪器具有体积小、重量轻、测量准确度高、稳定性好、操作简便易学等优点,接线简单,测试、记录方便,大大提高了工作效率。它以大屏幕真彩色图形式液晶作为显示窗口,图形式菜单操作并配有汉字提示;
集多参量于一屏的显示界面,人机对话界面友好,使用简便、快捷,是各级电力用户的首选产品。
电压互感器二次压降负荷测试仪:特别设计了软件修正功能,不需硬件调整就能实现精度修正,在各级电力试验研究部门均可现场检定。
中试控股电压互感器二次压降负荷测试仪自动完成三相三线或三相四线制的电压互感器二次压降及负荷的测量。
中试控股践行“精细制造,深耕技术”产出电压互感器二次压降负荷测试仪优质产品能够在市场中赢得用户信赖,树立中试控股新形象打下了坚实的根底。
(1)环境温度:-10℃~ 40℃
(2)相对湿度: ≤80%
2、测量精度
本仪器的测量精度为1级。
电压:0.5%
电流:0.5%
比差:Δf =±(2%×f+2%×δ)±0.01(%)
角差:Δδ=±(2%×δ+2%×f) ±1(分)
电导:G=± (1%×G+1%×δ±0.01) mS
电纳:δ=± (1%×δ+1%×G±0.01)mS
负荷:S=± (1%×S±0.1)VA
电阻:R=± (1%×R+1%×X±0.1)Ω
电抗:X=± (1%×X+1%×R±0.1)Ω
3、充电电源:交流176V~264V,频率45-55Hz
4、仪器的测量范围和分辨率
测试项目范围最小分辨率电压测量范围(V)40~120.0000.001电流测量范围(A)0.005~60.0001比差值(%)-10.000~10.0000.001角差值(ˊ)-600~600.000.01误差值(%)-10.000~10.0000.001修约(%)-10.000~10.0000.0015、绝缘:⑴、电压、电流输入端对机壳的绝缘电阻≥100M?。
⑵、工作电源输入端对外壳之间承受工频2KV(有效值),历时1分钟实验。
6、电池工作时间:充满后工作时间大于6小时。
7、体积:
主机:32cm×24cm×13cm
8、重量:
主机:2.5Kg
ZSPT-2000Y电压互感器二次压降负荷测试仪各键功能如下:
↑、↓、←、→键:光标移动键;在主菜单中用来移动光标,使其指向某个功能菜单;在参数设置功能屏下上下键用来切换当前选项。
键:即确认键,在主菜单下,按此键显示菜单子目录,在子目录下,按下此键即进入被选中的功能,另外,在输入某些参数时,开始输入和结束输入并使刚键入的数字有效。
退出键:返回键,按下此键均直接返回到主菜单。
存储键:用来将测试结果存储为记录的形式。
查询键:用来浏览已存储的记录内容。
设置键:保留功能,暂不用。
切换键:在“参量测试”屏中,用来切换被测装置的接线方式(三相三线或三相四线)。
自检键:保留功能,暂不用。
帮助键:用来显示帮助信息。
数字键:同时也是字符键,用来进行参数设置的输入(可输入数字或字符)。
小数点:用来在设置参数时输入小数点。
# 键:保留功能,暂不用。
F1、F2、F3、F4、F5:辅助功能键(快捷键)。用来快速进入辅助功能界面或实现相应的功能。
F1是开始测试功能键;
F4键:做为打印功能用来进行数据打印。
电流互感器烧毁的原因以及解决对策
电流互感器烧毁原因主要有如下四个方面:1电流互感器二次开路,产生高压,使电流互感器烧坏;2电流互感器使用年限过长绝缘老化,局部发生击穿或放电,产生过电压,使电流互感器发生烧坏;3电流互感器一次连接铝拍接触面氧化过重,接触电阻过大,发热使电流互感器烧坏;4用户超负荷运行时间长,使电流互感器发热烧坏,
此外,由于专用变压器用户的断路器再出现相间短路及过负荷时,断路器不能正常跳闸,也会导致电流互感器被烧毁现象。
针对上述问题,防止电流互感器被烧毁,一般采取以下对策:1装设看门狗断路器,避免分支故障波及整条馈线停电,尤其是能保证用电侧单相接地时分置断路器能可靠跳闸;2将计量用电流互感器接至断路器后面。以确保计量电流互感器发生故障时,断路器和避雷器正确动作切除故障;3加强用户高压计量电流互感器及避雷器高压绝缘试验,及早发现计量电流互感器绝缘老化程度,及时更换,避免出现计量电流互感器烧坏造成停电;4定期清扫用户设备,减少污闪,避免绝缘降低。

目前继电保护工作中检查电流回路的接线,主要是通过相位伏安表测得各回路的电流数据,再作出各被测量与参考量之间相位关系的向量图,进而判断现场互感器二次极性的正确性。若判断出CT绕组极性错误,需及时进行更改,否则会留下计量错误、保护装置拒动或误动等隐患。总结实际工作经验,本文强调在利用相位图进行判断前,要充分调查现场相关电流回路,弄清CT参数及基本接线情况,进而结合二者进行正确判断。
二、电流回路正确性的判断方法
在现场条件允许的情况下,测量电流回路数据之前首先详要细了解电流互感器的基本情况:各个绕组的使用变比、准确级(确定是否与所接二次设备相匹配);一次极性端P1、P2的所在位置,二次极性端S1(K1)、S2(K2)的引出情况等。若确定不了两侧绕组接法,须做极性试验来确定,极性试验的方法一般采用直流法,按图1所示进行接线:CT一次侧加直流干电池,二次侧接电流指针表。试验时若开关S闭合瞬间电流表指针正偏转,则两侧绕组极性为减极性,若指针反偏转则为加极性。
图1 CT极性试验接线图
其次要查阅相关技术资料,如使用的保护装置的说明书,初步判断现场实际接线是否与说明书规定电流的基准方向一致;核对铭牌查看电流互感器每个绕组的准确级是否与现场二次设备匹配等。
测数据时需注意,要在测试负荷较稳定(如主变或线路输送功率较稳定)的时候进行测量,先选定一参考量(一般选择UA或UAB),然后测出A、B、C各相的电流幅值及相位。一般来说,我们规定有功功率和无功功率从母线送往变压器或线路为正方向、电流从母线流向变压器或线路为正方向。以A相相电压UA为测量基准为例,作向量图时将+P和+UA定为同方向作如图2所示向量图。
图2 电流相位与有功、无功关系图
由及可知, P、Q的正负仅与θ角(各相电压与相电流的夹角)有关,分析起来,有以下4种情况:
当P>0且Q>0时,送有功、送无功,要求cosθ>0且sinθ>0,即0°<θ<90°,A相电流滞后相电压在0到90度之间,在向量图中应位于第一象限;
同理分析可得:
当P>0且Q<0时,送有功、受无功,A相电流应位于第二象限;
当P<0且Q<0时,受有功、受无功,A相电流应位于第三象限;
当P<0且Q>0时,受有功、送无功,A相电流应位于第四象限。
根据测试数据作得的向量图可判断出当前潮流的理论方向,而要判断电流回路接线是否正确必须结合目前潮流的实际方向、前期收集的电流互感器的数据信息以及保护说明书对CT极性的规定。总结起来,具体步骤如下:
(1)确定潮流的实际方向:结合现场一次设备的运行状态,通过相邻或对侧运行设备的潮流数据进行分析判断,必要时与调度单位核对确定;
(2)通过前期调查的电流回路信息,结合实际潮流方向预判相位伏安表所测各相电流大致该位于向量图的哪个象限;
(3)根据测试数据作出向量图进行验证,进而判断出电流互感器二次极性是否正确。
需要注意的是:测完电流回路的数据后要对CT变比进行验证(可通过与相邻设备保护装置的采样数据进行比较判断),这是实际工作中容易被忽略的要点。下面进行实例分析。
三、母线差动保护极性判断
图4所示为某变电站110kV母联及部分线路接线简图。现场调查得知母联112间隔电流互感器的P1端靠Ⅱ母侧、P2端靠Ⅰ母侧;使用CT变比为1200/5,将线路L2的采样值折算到母联断路器处进行比较证实变比正确;CT准确级为10P20级,满足母差保护的要求。
图4 110kV母联及部分线路接线图
查阅使用的BP-2B型母差保护说明书得知保护装置默认母联电流互感器的极性与Ⅱ母上的元件一致。现场测试数据后发现L2线路保护与母差保护潮流反向,因线路保护极性引出端靠Ⅱ母侧,可知线路L2的母差保护极性引出端靠线路侧,故母联电流互感器极性引出端靠I母,即S2引出,现场接线与说明书一致,下一步作向量图进一步验证。
当线路L2带上负荷后,测得数据如表1所示。
表1母差保护装置数据
幅值(A)
相位(度)
IA
0.922
13.5
IB
0.923
133.9
IC
0.923
253.9
从数据测试时的运行方式来看,Ⅱ母上只投了L2一条线路,其余线路处于冷备用状态,P、Q由110kVⅡ母送至线路L2,由表1所得数据作向量图如图5:
图5
由于有功功率P及无功功率Q均由Ⅱ母送至线路L2,故CT一次电流由P2流向P1,若二次电流是由S1引至母差保护装置,则图5中IA应位于第三象限,与现位置反向,而实际CT二次接线是由S2端引出至保护装置,与测试结果吻合,证明电流回路接线正确。
四、变压器差动及后备保护极性判断
对某已投运110kV变电站主变保护电流回路进行检查,已知主变压器为Y/△-11型接法,10kV侧带有电容器组,简要接线如图6所示。按照保护说明书规定得知差动保护及高、低后备保护电流极性引出端均靠母线侧。
图6 某变电站一次接线及CT极性简图
在进行带负荷测试时,投运了一组10kV侧的电容器作为负荷,由于负荷为纯电容,其向系统送无功,得到了实际的潮流:电流由10kV母线流向主变低压侧、由主变高压侧流向110kV母线。
以高压侧A相相电压为基准,测得高、低压两侧差动保护及后备保护的电流数据如表2、表3所示。下面作向量图判断电流互感器二次接线是否正确及是否与说明书一致。
图9 低压侧后备保护向量图
在低压10kV侧,按照说明书的规定方向判断相位伏安表的测试数据潮流方向为Q>0,IA应位于第一象限。图8所示是低压侧差动保护向量图,各相相位与上述分析结果正好反向,说明差动保护CT绕组的接线与说明书不一致,二次接线接反;对于低后备保护,同理分析可知接线正确,且与保护说明书规定一致,如图9所示。
在高压110kV侧,按照说明书的规定方向判断相位伏安表的测试数据潮流方向为Q<0,IA应位于第二象限,图7所示向量图说明高压侧差动保护及高后备保护CT绕组的接线与说明书不一致,二次接线接反。
上一篇:互感器压降负荷测试系统
下一篇:互感器二次压降测试系统
快速跳转