首页 > 新闻中心 > 高压技术<
中试控股技术研究院鲁工为您讲解:互感器二次负荷及压降在线仪(西门子技术)
ZSPT-2000Y电压互感器二次压降负荷测试仪
参考标准:GB50150-2006
简易读懂:电压互感器二次压降负荷测试仪可以做什么?
电压互感器二次压降负荷测试仪:电能计量综合误差过大是电能计量中普遍存在的一个关键问题。电压互感器二次回路压降引起的计量误差往往是影响电能计量综合误差的最大因素。所谓电压互感器二次压降引起的误差,
就是指电压互感器二次端子和负载端子之间电压的幅值差相对于二次实际电压的百分数,以及两个电压之间的相位差的总称。
中试控股始于1986年 ▪ 30多年专业制造 ▪ 国家电网.南方电网.内蒙电网.入围合格供应商
ZSPT-2000Y电压互感器二次压降负荷测试仪功能特点
ZSPT-2000Y电压互感器二次压降负荷测试仪技术指标
1、使用环境
该仪器具有体积小、重量轻、测量准确度高、稳定性好、操作简便易学等优点,接线简单,测试、记录方便,大大提高了工作效率。它以大屏幕真彩色图形式液晶作为显示窗口,图形式菜单操作并配有汉字提示;
集多参量于一屏的显示界面,人机对话界面友好,使用简便、快捷,是各级电力用户的首选产品。
电压互感器二次压降负荷测试仪:特别设计了软件修正功能,不需硬件调整就能实现精度修正,在各级电力试验研究部门均可现场检定。
中试控股电压互感器二次压降负荷测试仪自动完成三相三线或三相四线制的电压互感器二次压降及负荷的测量。
中试控股践行“精细制造,深耕技术”产出电压互感器二次压降负荷测试仪优质产品能够在市场中赢得用户信赖,树立中试控股新形象打下了坚实的根底。
2、自动计算三相的比差、角差、综合误差。
3、自动完成电压互感器和电流互感器二次回路负荷的测量。
4、能自动检测并存储在各种接线方式下由测试导线等引起的测量误差数据,并在以后的测试中自动修正。
5、特别设计了软件修正功能,不需硬件调整就能实现精度修正,在各级电力试验研究部门均可现场检定。
6、各种电参量同屏显示,电压、电流、相角、功率因数、有功功率、无功功率、视在功率均可测量;可显示各相参数的波形图。
7、具备谐波测量功能,可测量32次以下电压、电流的谐波含量。
8、内置大容量充电电池组,在室外无220V交流电情况下可由仪器内电池组供电,内置快速自动充电器,可对电池组快速充电。
9、电池剩余电量百分数指示功能,绝非简单的亏电报警。
10、大屏幕、高亮度的真彩色液晶显示屏,全汉字图形化菜单及操作提示实现友好的人机对话,导电硅胶按键使操作更简便,宽温液晶带自动对比度、亮度调节,可适应冬夏各季。
11、用户可随时将测试的数据通过微型打印机将结果打印出来。
12、测试结果存储功能,可存储200组测试数据。
13、配备了后台管理软件,可将存储记录上传到计算机进行统一管理。
(1)环境温度:-10℃~ 40℃
(2)相对湿度: ≤80%
2、测量精度
本仪器的测量精度为1级。
电压:0.5%
电流:0.5%
比差:Δf =±(2%×f+2%×δ)±0.01(%)
角差:Δδ=±(2%×δ+2%×f) ±1(分)
电导:G=± (1%×G+1%×δ±0.01) mS
电纳:δ=± (1%×δ+1%×G±0.01)mS
负荷:S=± (1%×S±0.1)VA
电阻:R=± (1%×R+1%×X±0.1)Ω
电抗:X=± (1%×X+1%×R±0.1)Ω
3、充电电源:交流176V~264V,频率45-55Hz
4、仪器的测量范围和分辨率
测试项目范围最小分辨率电压测量范围(V)40~120.0000.001电流测量范围(A)0.005~60.0001比差值(%)-10.000~10.0000.001角差值(ˊ)-600~600.000.01误差值(%)-10.000~10.0000.001修约(%)-10.000~10.0000.0015、绝缘:⑴、电压、电流输入端对机壳的绝缘电阻≥100M?。
⑵、工作电源输入端对外壳之间承受工频2KV(有效值),历时1分钟实验。
6、电池工作时间:充满后工作时间大于6小时。
7、体积:
主机:32cm×24cm×13cm
8、重量:
主机:2.5Kg
ZSPT-2000Y电压互感器二次压降负荷测试仪使用原则
1:电流互感器的接线应遵守串联原则:即一次绕阻应与被测电路串联,而二次绕阻则与所有仪表负载电流互感器串联
2:按被测电流大小,选择合适的变化,否则误差将增大。同时,二次侧一端必须接地,以防绝缘一旦损坏时,一次侧高压窜入二次低压侧,造成人身和设备事故
3:二次侧绝对不允许开路,因一旦开路,一次侧电流I1全部成为磁化电流,引起φm和E2骤增,造成铁心过度饱和磁化,发热严重乃至烧毁线圈;同时,磁路过度饱和磁化后,使误差增大。电流互感器在正常工作时,二次侧近似于短路,若突然使其开路,则励磁电动势由数值很小的值骤变为很大的值,铁芯中的磁通呈现严重饱和的平顶波,因此二次侧绕组将在磁通过零时感应出很高的尖顶波,其值可达到数千甚至上万伏,危及工作人员的安全及仪表的绝缘性能。另外,二次侧开路使二次侧电压达几百伏,一旦触及将造成触电事故。因此,电流互感器二次侧都备有短路开关,防止二次侧开路。在使用过程中,二次侧一旦开路应马上撤掉电路负载,然后,再停电处理。一切处理好后方可再用。
4:为了满足测量仪表、继电保护、断路器失灵判断和故障滤波等装置的需要,在发电机、变压器、出线、母线分段断路器、母线断路器、旁路断路器等回路中均设2~8个二次绕阻的电流互感器。
5:对于保护用电流互感器的装设地点应按尽量消除主保护装置的不保护区来设置。例如:若有两组电流互感器,且位置允许时,应设在断路器两侧,使断路器处于交叉保护范围之中
6:为了防止支柱式电流互感器套管闪络造成母线故障,电流互感器通常布置在断路器的出线或变压器侧
7:为了减轻发电机内部故障时的损伤,用于自动调节励磁装置的电流互感器应布置在发电机定子绕组的出线侧。为了便于分析和在发电机并入系统前发现内部故障,用于测量仪表的电流互感器宜装在发电机中性点侧。

(1).试验前对兆欧表本身进行检查,将兆欧表水平放稳,先短路试验后开路试验,当接通整流电源型兆欧表电源时,用导线瞬时短接“L”和“E”端子,其指示应为零;开路时,接通电源或兆欧表达额定转速时其指示应指“∞”。接线时先接接地端后接高压端。
(2).兆欧表上的接线端子“E”是接被试品的接地端的,为正极性,“L”是接被试品高压端的,为负极性。“G”是接屏蔽端的,为负极性。
三、绝缘电阻测试
1、测量一次绕组的绝缘电阻
(1)将电流互感器一次绕组P1、P2用短接线进行短接,所有二次绕组进行短路接地,末屏短路接地。(如果互感器表面泄漏较大时,应装屏蔽环,并用绝缘导线引接于兆欧表的“G”端。)
(2)绝缘电阻表“L”端接电流互感器一次绕组P1、P2端或短接线上,,“E”端接地。
(3)接线经检查无误后,按下“开始”按钮,仪表开始工作,1min后记录绝缘电阻值。 测试完成后,先将仪表与试品断开,再按“停止”按钮,使仪器恢复。后对电流互感器测试部位放电。
2、测量二次绕组的绝缘电阻
(1)一次绕组悬空,末屏短路接地,二次各绕组分别单独进行短接
(2)绝缘电阻表的“E”端接地,“L”端接在电流互感器其中的一组二次绕组上,其它二次绕组短接后接地
(3)接线经检查无误后,按下“开始”按钮,仪表开始工作,1min后记录绝缘电阻值。 测试完成后,先将仪表与试品断开,再按“停止”按钮,使仪器恢复。 后对电流互感器测试部位放电。
(4)电流互感器二次绕组每组,都要分别测量,直至所有绕组测量完毕。
3、测量末屏绝缘电阻
(1)将电流互感器一次绕组P1、P2用短接线进行短接,所有二次绕组进行短路接地,末屏接地解开
(2)绝缘电阻表“L”端接电流互感器“末屏端”,“E”端接地,“G”端接在一次绕组P1、P2端或短接线上。
(3)接线经检查无误后,按下“开始”按钮,仪表开始工作,1min后记录绝缘电阻值。 测试完成后,先将仪表与试品断开,再按“停止”按钮,使仪器恢复。后对电流互感器测试部位放电。恢复末屏接地。
4、试验结果分析
(1)一次绕组对二次绕组及外壳、各二次绕组间及其对外壳的绝缘电阻不宜低于1000 MΩ。
(2)一次绕组段间绝缘电阻不宜低于1000 MΩ,但由于结构原因而无法测量时可不进行。
(3)电容型电流互感器末屏绝缘电阻不宜小于1000MΩ.若末屏对地绝缘电阻小于1000 MΩ时,应测量其tanδ
(4)绝缘电阻测量应使用2500V兆欧表。
(5)当引出末屏的小套管有脏污时,应用抹布擦拭干净
四、结论
随着电力系统向高电压、大电流方向的发展,电流互感器在电力系统中起着重要的作用,它也随着发展的方向逐步的更新,适应着电网的发展。本文对电流互感器的使用、作用、注意事项进行了详细的解读,并对测量电流互感器的绝缘电阻这一常用实验进行了详细分析
中试控股电力讲解电流互感器10%误差分析通常有两种方法:一种是根据制造厂商提供的 电流互感器10%误差曲线,通过实测CT二次负载阻抗Zfh,如果Zfh小于CT允许二次大负载Zen,则误差满足要求,否则,应设法降低实际负载阻抗,直到满足要求为止;另一种是通过实测CT伏安特性绘制 曲线,从而达到10%误差分析目的,具体方法如下:
1 电流互感器10%误差曲线分析
1.1据系统参数,计算出CT一次电流饱和倍数 。其中 为大短路电流, 为CT一次额定电流, 可靠系数,各种保护 取值详见中国电力出版社出版的《电力系统继电保护实用技术问答》(第二版)P129(以下简称《技术问答》)。
1.2中试控股电力讲解电流电压法实测CT二次阻抗
1.2.1对于差动保护,由于外部故障时,差动继电器仅流过不平衡电流,故障电流不流过差动继电器,所以试验时应将差动继电器的线圈短接。
1.2.2对于星形连接,分别从CT二次A-N、B-N、C-N通入试验电压电流,得到每相负载阻抗 ,计算CT二次大负载Zfh时应取各相大值。
1.2.3对于三角形接线,分别从AB、BC、CA通入试验电压电流。其中 , , ,计算出A、B、C相阻抗:
1.2.4根据CT二次接线方式和故障类型,确定CT二次大负载Zfh。
一般情况下, , —继电器线圈阻抗, —连接导线阻抗,其它CT接线方式大负载Zfh计算见《技术问答》P130,对于有差回路的差动保护 。常见 、 接线系数一览表CT接线方式 接线系数
1.2.5误差分析。根据计算电流倍数 ,从 曲线上查找出允许二次大负载 。当 < 时,满足10%误差要求,否则不能满足。
2 CT伏安特性试验
2.1实测CT的伏安特性试验:试验时CT一次开路,在电流互感器二次侧通入试验电压电流,测出 伏安特性曲线。一般要求测录到饱和点,电流表宜用电磁型或电动型仪表,分析误差时应取A、B、C相伏安数低值曲线。
中试控股电力讲解试验等值电路图:
作出励磁阻抗特性曲线
2.2绘制 电流互感器10%误差曲线
备注:①X为某一次试验数据,根据第4、5、6项可作出 曲线。
② 对于额定电流为5A的CT, ;额定电流为1A的CT, 。如果电流互感器额定变比 (匝数比), 则根据第6项来计算。
③ 为CT二次额定电流, 数值见《技术问答》P129。
④对于500kV的CT,横坐标用伏安数表示( )。
2.3误差分析方法同1.2.5所述。
摘要:根据电流互感器的等值电路图,讨论了2种电流互感器变比检查试验方法(电流法和电压法)的原理和特点,推荐一种简便可靠的电流互感器变比检查现场试验方法——电压法。
关键词:电流互感器 变比检查 电流法 电压法
不管是老标准还是新规程,都把电流互感器交接时和更换绕组后的现场变比检查试验列为重要试验项目。虽然电流互感器变比的准确度应由制造部门保证,但由于种种原因,现场试验时偶而也能检查出错误(大多是抽头引错)。因此现场变比检查试验成为多年不变的项目。
电流互感器工作原理大致与变压器相同,不同的是变压器铁心内的交变主磁通是由一次线圈两端交流电压所产生,而电流互感器铁心内的交变主磁通是由一次线圈内电流所产生,一次主磁通在二次线圈中感应出二次电势而产生二次电流。
从电流互感器工作原理可知:决定电流互感器变比的是一次线圈匝数与二次线圈匝数之比,影响电流互感器变比误差的主要原因有:(1)电流的大小,比差和角差随二次电流减小而增大;(2) 二次负荷的大小,比差和角差随二次负荷减小而减小;(3)二次负荷功率因数,随着二次负荷功率因数的增大,比差减小而角差增大;(4) 电源频率的影响;(5)其它因素。电流互感器内部参数也可能引起变比误差,如二次线圈内阻抗、铁心截面、铁心材料、二次线圈匝数等,但这是由设计和制造决定的。
电流互感器变化的误差试验应由制造厂在出厂试验时完成或在试验室进行。而电流互感器变比现场试验属于检查性质,即不考虑上述影响电流互感器变比误差的原因而重点检查匝数比。根据电工原理,匝数比等于电压比或电流比之倒数。因此测量电压比和测量电流比都可以计算出匝数比。
快速跳转