首页 > 新闻中心 > 电力技术<

电力技术
高压电缆竣工耐压实验60分钟装置
时间:2023-02-04

中试控股技术研究院为您讲解: 高压电缆竣工耐压实验60分钟装置

适用电压等级:6kV、10kV、35kV、66kV、110kV、220kV、330kV、500kV、750kV、1000kV,也可以定制不同的电压等级规格。
ZSBP系列变频串联谐振耐压试验装置组成部分:变频电源主机、激励变压器、电抗器、电容分压器、补偿电容器、测试附件组成。

参考标准:DL/T 474.4-2018

简易读懂:变频串联谐振耐压试验装置可以做什么?
变频串联谐振成套耐压试验装置适用于大容量,高电压的电容性试品的交接和预防性试验.

主要针对电力电缆、变压器、断路器/开关、开关柜、避雷器、电压互感器、电流互感器、套管、支柱绝缘子、电抗器、母线、隔离开关、输电线路、发电机、电动机、熔断器、电容器、隔离开关、接触器、配电箱、绝缘材质、变电站系统的交流耐压试验。

中试控股始于1986年 ▪ 30多年专业制造 ▪ 国家电网.南方电网.内蒙电网.入围合格供应商

适用以下电缆的交流耐压试验:
电力电缆、控制电缆、补偿电缆、屏蔽电缆、高温电缆、计算机电缆、信号电缆、同轴电缆、耐火电缆、船用电缆、矿用电缆、铝合金电缆、电器装备用电线电缆、RVVP表示:铜芯聚氯乙烯绝缘屏蔽聚氯乙烯护套软电缆电压300V/300V 2-24芯;
RG表示:物理发泡聚乙烯绝缘接入网电缆用于同轴光纤混合网中传输数据模拟信号;
UTP表示:局域网电缆;
KVVP为:聚氯乙烯护套编织屏蔽电缆,SYWV(Y)、SYKV 有线电视、宽带网专用电缆;
RVV表示:聚氯乙烯绝缘软电缆;
AVVR表示:聚氯乙烯护套安装用软电缆;
RV、RVP表示:聚氯乙烯绝缘电缆;
BV、BVR表示:聚氯乙烯绝缘电缆;
KVV表示:聚氯乙烯绝缘控制电缆等。

选择合适的试验频率范围是个比较重要的问题。在这方面,就目前国内外的提法来看,总结可分成3类:第1类为较宽频率范围30-300Hz、20-300Hz、1-300Hz;第2类为工频范围,45-65Hz,45-55Hz;第3类为接近工频,35-75Hz。
试验参考
10kv电缆交接试验耐压打2.5U0电压,试验时间为5min。 GB50150-2006《电气装置安装工程电气设备交接试验标准》中18.0.5条表18.0.5规定10kv电缆试验电压为(2.5U0),试验时间为5min(2.5U0时)。 10KV电缆是一般有6/10KV和8.7/10KV两种,这两种电缆的U0是不相同的。根据试验标准6/10KV是施加15KV(6x2.5=15)交流电5分钟,电缆不击穿;而8.7/10KV则是施加21.75KV(8.7x2.5=21.75)交流电5分钟,电缆不击穿。交流耐压试验:电力设备在运行中,绝缘长期受着电场、温度和机械振动的作用会逐渐发生劣化,其中包括整体劣化和部分劣化,形成缺陷。交流耐压试验是鉴定电力设备绝缘强度最有效和最直接的方法,是预防性试验的一项重要内容。此外,由于交流耐压试验电压一般比运行电压高,因此通过试验后,设备有较大的安全裕度,因此交流耐压试验是保证电力设备安全运行的一种重要手段。

电缆做耐压试验怎么做
1、被试电缆两端设好围栏并有专人看护。
2、测量电缆相位,确保电缆两端相位一致。
3、先用5000V兆欧表测量,正常情况下新电缆阻值均在10000MQ以上。多芯电缆应分别测量每一芯线对其它芯线及外皮的绝缘电阻。外护套及内衬层使用500V绝缘电阻测试仪测试其对地电阻。
4、开始打耐压,每相时间一般为20分钟。
5、试验完成后先把电压降下来再切断电源放电。
6、用5000v兆欧表再测量一次绝缘,绝缘电阻不应有明显下降
一般都采用串联谐振交流耐压试验设备。其输入电源的容量能显著降低,重量减轻,便于使用和运输。初期多采用调感式串联谐振设备(50Hz),但存在自动化程度差、噪音大等缺点。因此现在大都采用调频式(30-300Hz)串联谐振试验设备,可以得到更高的品质数(Q值),并具有自动调谐、多重保护,以及低噪音、灵活的组合方式(单件重量大为下降)等优点。

如何选择合适的变频串联谐振耐压试验装置?
为了选对规格,请提供以下技术参数
1、电力变压器:电压等级,大容量,试验性质(中性点耐压或全绝缘耐压)单相对地电容量;
2、电力电缆:电压等级,大长度,截面积;
3、发电机、电动机:电压等级(出口电压或称工作电压),试验电压(耐压值)单相对地电容量范围(如0.2-0.55uF等);
4、开关、绝缘子、PT、CT、绝缘工器具、母线:电压等级(或称工作电压);试验电压(耐压值);
5、CVT效验:电压等级或称工作电压,试验电压(耐压值)电容量范围(如0.005-0.02uF)。




中试控股践行“精细制造,深耕技术”产出变频串联谐振耐压成套试验装置优质产品能够在市场中赢得用户信赖,树立中试控股新形象打下了坚实的根底。











串联谐振
具体区别有以下几点:       
1.逆变器供电不同。串联谐振逆变器是恒压源供电,并联谐振则是恒流源供电。       
2.逆变器的工作频率要求不同。串联谐振逆变器的工作频率必须低于负载电路的固有振荡频率,而并联谐振逆变器的工作频率必须高于负载电路的固有振荡频率。       
3.功率调节方式不一样。并联谐振逆变器的功率调节方式只有改变直流电源电压Ud一种,而串联谐振则多一种改变晶闸管的触发频率的方式。        
4.逆变器在换流时,晶闸管关断时间和方式不同。串联谐振逆变器在换流时,晶闸管是自然关断的,关断时间短。而并联谐振逆变器在换流时,晶闸管是被强迫关断的,关断时间长。       
5.串联谐振逆变器可以自激工作,也可以他激工作。而并联谐振逆变器一般只能工作在自激状态。     6.逆变器启动难易程度不一样。串联谐振逆变器起动容易,适用于频繁起动工作的场合;而并联谐振逆变器需附加起动电路,起动较为困难。
在电阻、电容、电感串联电路中,出现电源、电压、电流同相位现象,叫做串联谐振,其特点是:电路呈纯电阻性,电源、电压和电流同相位,电抗X等于0,阻抗Z等于电阻R,此时电路的阻抗最小,电流最大,在电感和电容上可能产生比电源电压大很多倍的高电压,因此串联谐振也称电压谐振。
谐振电压与原电压叠加,并联谐振:在电阻、电容、电感并联电路中,出现电路端电压和总电流同相位的现象,叫做并联谐振,其特点是:并联谐振是一种完全的补偿,电源无需提供无功功率,只提供电阻所需要的有功功率,谐振时,电路的总电流最小,而支路电流往往大于电路中的总电流,因此,并联谐振也叫电流谐振。
串联谐振装置就用运用串联谐振原理设计的最新型交流耐压试验设备。一套串联谐振耐压试验设备,可兼顾电力变压器、交联电缆、开关柜、电动机、发电机、GIS和SF6开关、母线、套管、CT、PT等试品的交流耐压试验,是全能型的交流耐压设备。
串联谐振称为电压谐振的原因:因为串联谐振电路发生谐振时,电流与电压同相位,电流达到最大,电容器和电感上的电压分别等于外加电压的Q倍,所以串联谐振又称电压谐振。
在电阻、电感及电容所组成的串联电路内,当容抗XC与感抗XL相等时,即XC=XL,电路中的电压U与电流I的相位相同,电路呈现纯电阻性,这种现象叫串联谐振。当电路发生串联谐振时电路的阻抗Z=√R^2 +(XC-XL)^2=R,电路中总阻抗最小,电流将达到最大值。
        阻抗条件,谐振后虚部相等符号相反。串联阻抗等于0,并联阻抗等于无穷大。就是在谐振的时候,串联电路谐振电流无穷大;并联电路谐振电压无穷大(理论值)。
        在电阻、电感及电容所组成的串联电路,内,当容抗XC=感抗XL相等时,即发生串联谐振,此时电路中的电压U与电流I的相位相同。电路发生串联谐振时,电路的阻抗Z=√R2+XC-XL2=R,电路中总阻抗最小,电流将达到最大值。
①利用串联谐振产生工频高电压,应用在高电压技术中,为变压器等电力设备做耐压试验,可以有效的发现设备中危险的集中性缺陷,是检验电气设备绝缘强度的最有效和最直接的方法。
①利用串联谐振产生工频高电压,应用在高电压技术中,为变压器等电力设备做耐压试验,可以有效的发现设备中危险的集中性缺陷,是检验电气设备绝缘强度的最有效和最直接的方法。
②在无线电工程中,常常利用串联谐振以获得较高的电压。
RLC串联谐振电路谐振时,总阻抗最小,电流最大。
串联短路中,电流处处相等,而电感的电压超前限流90°,电容的电压滞后电流90°,这样,电感个电容的相位差180°,电压互相抵消。
频率越高,电感两端电压越高,电容两端频率越低,这样,就必然存在一个频率,使电感和电容两端的电压一样大。这时,就称电路满足谐振条件,这个频率,就称为谐振频率。
谐振频率f0=1/2π√LC。
体现在整个回路,谐振时,感抗和容抗完全抵消,回路总阻抗等于电阻值,阻抗达到最小。
这两种现象是正弦交流电路的一种特定现象,它在电子和通讯工程中得到广泛的应用,但在电力系统中,发生谐振有可能破坏系统的正常工作。接下来分析一下串联谐振和并联谐振这两种谐振到底都有哪些区别。
从负载谐振方式划分,可以为并联谐振逆变器和串联谐振逆变器两大类型,下面对这两种类型进行比较:串联谐振回路是用L、R和C串联,并联谐振回路是L、R和C并联。
(1)串联谐振逆变器的负载电路对电源呈现低阻抗,要求由电压源供电。当逆变失败时,浪涌电流大,保护困难。并联谐振逆变器的负载电路对电源呈现高阻抗,要求由电流源供电。在逆变失败时,冲击不大,较易保护。
(2)串联谐振逆变器的输入电压恒定,输出电压为矩形波,输出电流近似正弦波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压一φ 角。并联谐振逆变器的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压一φ角。
(3)是恒压源供电。并联谐振逆变器是恒流源供电。
(4)串联谐振逆变器的工作频率必须低于负载电路的固有振荡频率。并联谐振逆变器的工作频率必须略高于负载电路的固有振荡频率。
(5)串联谐振逆变器的功率调节方式有二:改变直流电源电压Ud或改变晶闸管的触发频率。并联谐振逆变器的功率调节方式,一般只能是改变直流电源电压Ud。
(6)串联谐振逆变器在换流时,晶闸管是自然关断的,关断前其电流已逐渐减小到零,因而关断时间短,损耗小。并联谐振逆变器在换流时,晶闸管是在全电流运行中被强迫关断的,电流被迫降至零以后还需加一段反压时间,因而关断时间较长。
(7)串联谐振逆变器的晶闸管所需承受的电压较低,用380V电网供电时,采用1200V的晶闸管就行。并联谐振逆变器的晶闸管所需承受的电压高,其值随功率因数角φ增大,而迅速增加。
(8)串联谐振逆变器可以自激工作,也可以他激工作。而并联谐振逆变器一般只能工作在自激状态。
(9)在串联谐振逆变器中,晶闸管的触发脉冲不对称,不会引入直流成分电流而影响正常运行;而在并联谐振逆变器中,逆变晶闸管的触发脉冲不对称,则会引入直流成分电流而引起故障。
(10)串联谐振逆变器起动容易,适用于频繁起动工作的场合;而并联谐振逆变器需附加起动电路,起动较为困难。
(11)串联谐振逆变器的感应加热线圈与逆变电源(包括槽路电容器)的距离远时,对输出功率的影响较小。而对并联谐振逆变器来说,感应加热线圈应尽量靠近电源(特别是槽路电容器),否则功率输出和效率都会大幅度降低。
并联谐振逆变器和串联谐振逆变器(通称并联或串联变频电源)各有其自己的技术特点和应用领域。从工业加热应用的角度,并联谐振逆变器广泛应用于 熔炼、保温、透热、感应加热热处理等各种领域,其功率可以从几千瓦到上万千瓦。串联谐振逆变器广泛应用于熔炼—保温的一拖二炉组以及高Q值高频率的感应加 热场合,其功率可以从几千瓦到几千千瓦。目前我国工业上采用的变频电源90%以上属并联谐振变频电源。

通俗的来说就是串联谐振电路采用电压源供电,并联谐振电路采用电流源供电,即电压源型感应加热电源必须匹配串联谐振型负载电路,电流源型感应加热电源必须匹配并联谐振型负载电路,这是电源与负载的初次匹配措施。
串联谐振电路负载匹配方案:
由谐振时候的状态来分析:串联谐振电路在谐振状态下等效阻抗为纯电阻,并达到最小值,并联谐振电路在谐振状态下等效阻抗达到最大值,为了获得最大的电源输出功率,串联谐振电路采用电压源供电,并联谐振电路采用电流源供电.
基于电源方面的分析:一个内阻低的,电压源,使其输出功率达到最大,电源利用率最高,负载阻抗越低自然输出功率越大.反之一个内阻高,电流源,使其输出功率达到最大,负载阻抗是越高输出功率越大.根据的逻辑就是电压源电压恒定不变,电流随负载阻抗改变而改变;电流源电流恒定不变,电压随负载改变而改变.
结论就是这个滤波电路的选择是进行的初次负载匹配,为了使其输出最大的功率.
并联谐振:在电感和电容并联的电路中,当电容的大小恰恰使电路中的电压与电流同相位,即电源电能全部为电阻消耗,成为电阻电路时,叫作并联谐振。 
并联谐振的原理
在电感、电容和外加交流电源相并联的振荡回路,通常电感线圈是用电阻和电感的串联组合来表示的,电容器的损耗及漏电流一般很小,在一定条件下可忽略不计。如果回路的感抗和容抗比电阻大得多,即ωL(ωC)>>R,并联回路的固有频率可近似为f=1/2πLC。如果Q、L、C达到一定条件,使并联电路的感纳和容纳相等BL=BC(BL=ωL,BC=1/ωC),从而使电纳B等于零(B=BL——BC=0),则电流与电压将同相(ω=0),这种情况称为 R、L、C并联谐振。
并联谐振的产生条件
并联谐振是一种完全的补偿,电源无需提供无功功率,只提供电阻所需要的有功功率。谐振时,电路的总电流最小,而支路的电流往往大于电路的总电流,因此,并联谐振也称为电流谐振。发生并联谐振时,在电感和电容元件中流过很大的电流,因此会造成电路的熔断器熔断或烧毁电气设备的事故;但在无线电工程中往往用来选择信号和消除干扰。
并联谐振电路的特性
1、如果外加频率比谐振频率高时,电路阻抗呈容性,相当于一个电容。
2、如果外加频率等于谐振频率时,电路阻抗呈纯电阻性,且有最大值,它这个特性在实际应用中叫做选频电路。
3、如果外加频率比谐振频率低时,这时电路呈感性,相当于一个电感线圈。
所以当串联或并联谐振电路不是调节在信号频率点时,信号通过它将会产生相移(即相位失真) 。
并联谐振的危害
当电力线路发生并联谐振时,支路电流往往大大超过电路总电流,造成熔断器熔断、开关跳闸或烧毁电气设备的事故。所以电力线路中要避免发生谐振。 






变频谐振装置应用
1、6kV-500kV高压交联电缆的交流耐压试验
2、发电机的交流耐压试验
3、GIS和SF6开关的交流耐压试验
4、6kV-500kV变压器的工频耐压试验
5、其它电力高压设备如母线,套管,互感器的交流耐压试验。

变频谐振装置原理
在回路频率f=1/2π√LC时,回路产生谐振,此时试品上的电压是励磁变高压端输出电压的Q倍。Q为系统品质因素,即电压谐振倍数,一般为几十到一百以上。先通过调节变频电源的输出频率使回路发生串联谐振,再在回路谐振的条件下调节变频电源输出电压使试品电压达到试验值。由于回路的谐振,变频电源较小的输出电压就可在试品CX上产生较高的试验电压。

变频谐振装置特点
体积小,重量轻,特别适合现场使用;
过压,过流,放电,过热及零启动保护全面可靠,动作时间1微秒;
一键鼠标式旋钮“傻瓜式”操作,大屏幕液晶显示;
独有软件校准功能,方便用户校准表计,确保高电压值准确度。

串联谐振设备正是利用了这一特点,串联谐振设备一般由变频电源、高压电抗器、激励变压器、电容分压器及若干连接线、支架等附件组成。

        利用调谐电感与负荷电容使之产生工频串联谐振,以获得工频试验电压的设备由变频电源、励磁变压器、电抗器、补偿电容及分压器组成。被试品的电容与电抗器构成串联谐振连接方式;分压器并联在被试品上,用于测量被试品上的谐振电压,并作过压保护信号;调频功率输出经激励变压器耦合给串联谐振回路,提供串联谐振的激励功率。
        串联谐振在具有电阻R、电感L和电容C元件的交流电路中,电路两端的电压与其中电流位相一般是不同的。如果我们调节电路元件(L或C)的参数或电源频率,可以使它们位相相同,整个电路呈现为纯电阻性。电路达到这种状态称之为谐振。在谐振状态下,电路的总阻抗达到极值或近似达到极值。
        在实际串联谐振设备在工作之时,主要是利用激励变压器来激发串联谐振回路,同时调节变频控制器的输入频率,使回路电感L和试品C串联谐振,谐振得到的电压即为加到被试品上的极限电压。
但是在实际操作中,因为每个被试品的能够承受的极限电压并不相同,一般在试验之前需要选择合适的串联谐振设备,一般10/35/110kV的电缆,以及110kV变压器和母线以及高压开关均可使用串联谐振设备进行检测,但是必须调整好电压以免被误击穿,影响测试结果和人员的安全。
        得到了被试品的极限电压,再和被试品出厂时需要的极限电压进行对比,如果没有达到出厂合格标准的,即为次品必须回厂重新生产,因此通过这种方法就可以得到合格的电气产品。
 近年来随着我国电力改造的不断升级以及全社会用电量的稳步回升,电力电缆的检测行为越来越多,而变频串联谐振设备又在电力电缆检测中扮演着非常重要的地位,那么在变频串联谐振耐压试验装置使用的时候应该注意哪些问题呢?


    首先关于人员方面,由于变频串联谐振设备属于高压设备,参与试验人员为了安全起见,不得少于两人,而且人员在操作设备之前必须熟读设备的使用说明书,做到设备该如何使用了然于胸,同时操作设备的人员必须持证上岗,而且必须按照国家相关标准和规定进行操作,不可马虎大意。
    其次关于场地方面,必须选择远离居民区、空旷安全的场地,下雨天不可在户外进行试验,试验开始后不得让无关人员随意接近变频串联谐振设备。
    关于接线方面,变频串联谐振试验设备谐振电抗器、分压器、励磁变压器等应该尽量靠近被试验的电缆以求尽量让接线比较短,同时应该做好接地准备,接地线也应该尽量短。
    由于变频串联谐振属于高压电器设备,在使用的时候一定要注意使用人员的安全,注意到以上这些事项可以减少使用的风险。     在很多时候,如果想测试电缆厂生产的新电缆是否合格,或者在输电线路铺设新电缆之前,都需要对电缆进行交流耐压试验,来模拟电缆在日后的工作中面临的高电压和高电流,用来判断电缆是否能胜任工作。此时一般来说,可以使用变频串联谐振装置来进行该项试验,由于变频串联谐振装置比较灵活多变,通过简单的调节电抗器就可以改变电压大小,因此很受电力工作者欢迎。但是由于变频串联谐振装置的组成设备比较多,主机、电抗器、激励变等,接线比较麻烦,因此中试控股电力在本文就简单介绍使用变频串联谐振装置进行电缆交流耐压试验的接线方案。
 在电力行业中,经常需对电力设备的绝缘耐压属性进行相应的测试,而变频串联谐振装置就是比较符合这些实验要求的设备,变频串联谐振装置一般由变频控制电源、励磁变压器、电抗器、电容分压器组成,该具有较宽的适用范围,是地、市、县级高压试验部门及电力安装、修试工程单位理想的耐压设备。本文就简单介绍变频串联谐振装置在电力系统中应用的优点。
        1、不会出现任何恢复过电压。试品发生击穿时,因失去谐振条件,高电压也立即消失,电弧即刻熄灭,且恢复电压的再建立过程很长,很容易在再次达到闪络电压前断开电源,这种电压的恢复过程是一种能量积累的间歇振荡过程,其过程长,而且,不会出现任何恢复过电压。
        2、防止大的短路电流烧伤故障点。在串联谐振状态,当试品的绝缘弱点被击穿时,电路立即脱谐,回路电流迅速下降为正常试验电流的1/Q。而并联谐振或者试验变压器方式做耐压试验时,击穿电流立即上升几十倍,两者相比,短路电流与击穿电流相差数百倍。所以,串联谐振能有效的找到绝缘弱点,又不存在大的短路电流烧伤故障点的忧患。
        3、改善输出电压的波形。谐振电源是谐振式滤波电路,能改善输出电压的波形畸变,获得很好的正弦波形,有效的防止了谐波峰值对试品的误击穿。
        4、设备的重量和体积大大减少。串联谐振电源中,不但省去了笨重的大功率调压装置和普通的大功率工频试验变压器,而且,谐振激磁电源只需试验容量的1/Q,使得系统重量和体积大大减少,一般为普通试验装置的1/10-1/30。
        5、所需电源容量大大减小。串联谐振电源是利用谐振电抗器和被试品电容谐振产生高电压和大电流的,在整个系统中,电源只需要提供系统中有功消耗的部分,因此,试验所需的电源功率只有试验容量的1/Q。
        变频串联谐振工频耐压试验装置因为其实用性和测试较为精准,因此在电力系统中有着非常广泛的应用,深受广大电电力工作者的喜爱。

 

 

 

 

 

 

 

 

销售热线

  • 400-046-1993全国统一服务热线
  • 销售热线:027-83621138
  • 售后专线:027-83982728
  • 在线QQ咨询: 149650365      
  • 联系我们

 

增值服务

  • 三年质保,一年包换,三个月试用

 

 

 

 


 

版权所有:湖北中试高测电气控股有限公司 鄂TCP备12007755号